Skip to main content
Top
Published in: Journal of Materials Science 17/2014

01-09-2014

Thermal conductivities of alumina-based multiwall carbon nanotube ceramic composites

Authors: Kaleem Ahmad, Pan Wei, Chunlei Wan

Published in: Journal of Materials Science | Issue 17/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Composites incorporating various vol.% (0.0, 1.1, 6.4, and 10.4) of multiwall carbon nanotubes (MWCNTs) in alumina were consolidated by the spark plasma sintering. Their thermal transport properties were investigated over the temperature range 300–800 K as a function of nanotube contents. It was observed that the temperature-dependent effective thermal conductivity decreases with the addition of MWCNTs in alumina. This behavior was analyzed in terms of phonon mean free path, elastic modulus, average sound speed, and interface thermal resistance. Compared with 1/T behavior for pristine alumina, a subtle decrease in temperature dependence of the thermal conductivity of the composites with the addition of MWCNTs is observed, indicating the presence of extra phonon scattering mechanism beyond the intrinsic phonon–phonon scattering. Simulation of experimental results with theoretical model shows that the large interfacial thermal barrier between MWCNTs and alumina plays a dominant role in controlling thermal transport properties of the composites. In addition to dominant interface thermal resistance other secondary factors such as nanotube agglomeration, processing defects, porosity also contribute for low thermal conductivity at the higher volume fraction of MWCNTs in the composite.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
3.
go back to reference Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601CrossRef Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601CrossRef
4.
go back to reference Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82CrossRef Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82CrossRef
5.
go back to reference Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef
6.
go back to reference Wang J, Wang J-S (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 88:111909CrossRef Wang J, Wang J-S (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 88:111909CrossRef
7.
go back to reference Xu Z, Buehler MJ (2009) Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 3:2767–2775CrossRef Xu Z, Buehler MJ (2009) Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 3:2767–2775CrossRef
8.
go back to reference Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRef Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRef
9.
go back to reference Ahmad K, Pan W (2009) Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos Sci Technol 69:1016–1021CrossRef Ahmad K, Pan W (2009) Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos Sci Technol 69:1016–1021CrossRef
10.
go back to reference Ahmad K, Pan W, Shi S-L (2006) Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl Phys Lett 89:133122CrossRef Ahmad K, Pan W, Shi S-L (2006) Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl Phys Lett 89:133122CrossRef
11.
go back to reference Corral EL, Wang H, Garay J, Munir Z, Barrera EV (2011) Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering. J Eur Ceram Soc 31:391–400CrossRef Corral EL, Wang H, Garay J, Munir Z, Barrera EV (2011) Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering. J Eur Ceram Soc 31:391–400CrossRef
12.
go back to reference Ahmad K, Pan W (2009) Nanostructured materials and nanotechnology ii: ceramic engineering and science proceedings, vol 29, 8th edn. John Wiley & Sons, Inc., Hoboken Ahmad K, Pan W (2009) Nanostructured materials and nanotechnology ii: ceramic engineering and science proceedings, vol 29, 8th edn. John Wiley & Sons, Inc., Hoboken
13.
go back to reference Zhan GD, Mukherjee AK (2004) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol 1:161–171CrossRef Zhan GD, Mukherjee AK (2004) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol 1:161–171CrossRef
14.
go back to reference Zapata-Solvas E, Gomez-Garcia D, Dominguez-Rodriguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020CrossRef Zapata-Solvas E, Gomez-Garcia D, Dominguez-Rodriguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020CrossRef
15.
go back to reference Bakshi SR, Balani K, Agarwal A (2008) Thermal conductivity of plasma-sprayed aluminum oxide—multiwalled carbon nanotube composites. J Am Ceram Soc 91:942–947CrossRef Bakshi SR, Balani K, Agarwal A (2008) Thermal conductivity of plasma-sprayed aluminum oxide—multiwalled carbon nanotube composites. J Am Ceram Soc 91:942–947CrossRef
16.
go back to reference Kumari L, Zhang T, Du GH et al (2008) Thermal properties of CNT-Alumina nanocomposites. Compos Sci Technol 68:2178–2183CrossRef Kumari L, Zhang T, Du GH et al (2008) Thermal properties of CNT-Alumina nanocomposites. Compos Sci Technol 68:2178–2183CrossRef
17.
go back to reference Pop E, Mann D, Wang Q, Goodson K, Dai H (2005) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRef Pop E, Mann D, Wang Q, Goodson K, Dai H (2005) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRef
18.
go back to reference Zhan GD, Kuntz JD, Garay JE, Mukherjee AK (2003) Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl Phys Lett 83:1228–1230CrossRef Zhan GD, Kuntz JD, Garay JE, Mukherjee AK (2003) Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl Phys Lett 83:1228–1230CrossRef
19.
go back to reference Hao Y, Zhang QF, Wei F, Qian WZ, Luo GH (2003) Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism. Carbon 41:2855–2863CrossRef Hao Y, Zhang QF, Wei F, Qian WZ, Luo GH (2003) Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism. Carbon 41:2855–2863CrossRef
20.
go back to reference Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002) The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett 364:568–572CrossRef Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002) The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett 364:568–572CrossRef
21.
go back to reference Yang K, He J, Su Z et al (2010) Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48:756–762CrossRef Yang K, He J, Su Z et al (2010) Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48:756–762CrossRef
22.
go back to reference Ahmad I, Unwin M, Cao H et al (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRef Ahmad I, Unwin M, Cao H et al (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRef
23.
go back to reference Ning JW, Zhang JJ, Pan YB, Guo JK (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392–396CrossRef Ning JW, Zhang JJ, Pan YB, Guo JK (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392–396CrossRef
24.
go back to reference Schlichting KW, Padture NP, Klemens PG (2001) Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 36:3003–3010CrossRef Schlichting KW, Padture NP, Klemens PG (2001) Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 36:3003–3010CrossRef
25.
go back to reference Barin I (1993) Thermochemical data of pure substances. VCH, Weinheim Barin I (1993) Thermochemical data of pure substances. VCH, Weinheim
26.
go back to reference Zhang HL, Li JF, Zhang BP, Yao KF, Liu WS, Wang H (2007) Electrical and thermal properties of carbon nanotube bulk materials: experimental studies for the 328–958 K temperature range. Phys Rev B 75:205407CrossRef Zhang HL, Li JF, Zhang BP, Yao KF, Liu WS, Wang H (2007) Electrical and thermal properties of carbon nanotube bulk materials: experimental studies for the 328–958 K temperature range. Phys Rev B 75:205407CrossRef
27.
go back to reference Qin C, Shi X, Bai SQ, Chen LD, Wang LJ (2006) High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater Sci Eng A 420:208–211CrossRef Qin C, Shi X, Bai SQ, Chen LD, Wang LJ (2006) High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater Sci Eng A 420:208–211CrossRef
28.
go back to reference Miranzo P, García E, Ramírez C, González-Julián J, Belmonte M, Isabel Osendi M (2012) Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J Eur Ceram Soc 32:1847–1854CrossRef Miranzo P, García E, Ramírez C, González-Julián J, Belmonte M, Isabel Osendi M (2012) Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J Eur Ceram Soc 32:1847–1854CrossRef
29.
go back to reference Xie H (2007) Thermal and electrical transport properties of a self-organized carbon nanotube pellet. J Mater Sci 42:3695–3698CrossRef Xie H (2007) Thermal and electrical transport properties of a self-organized carbon nanotube pellet. J Mater Sci 42:3695–3698CrossRef
30.
go back to reference Xie H, Cai A, Wang X (2007) Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys Lett A 369:120–123CrossRef Xie H, Cai A, Wang X (2007) Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys Lett A 369:120–123CrossRef
31.
go back to reference Huang Q, Gao L, Liu YQ, Sun J (2005) Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites. J Mater Chem 15:1995–2001CrossRef Huang Q, Gao L, Liu YQ, Sun J (2005) Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites. J Mater Chem 15:1995–2001CrossRef
32.
go back to reference Li J, Wang L, He T, Jiang W (2009) Transport properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 47:1135–1140CrossRef Li J, Wang L, He T, Jiang W (2009) Transport properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 47:1135–1140CrossRef
33.
go back to reference Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814CrossRef Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814CrossRef
34.
go back to reference Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769CrossRef Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769CrossRef
35.
go back to reference Li GH, Hu ZX, Zhang LD, Zhang ZR (1998) Elastic modulus of nano-alumina composite. J Mater Sci Lett 17:1185–1186CrossRef Li GH, Hu ZX, Zhang LD, Zhang ZR (1998) Elastic modulus of nano-alumina composite. J Mater Sci Lett 17:1185–1186CrossRef
36.
go back to reference Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3 composites. J Eur Ceram Soc 30:1373–1380CrossRef Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3 composites. J Eur Ceram Soc 30:1373–1380CrossRef
37.
go back to reference Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163–164:67–74CrossRef Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163–164:67–74CrossRef
38.
go back to reference Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, Hoboken Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, Hoboken
39.
go back to reference Yang DJ, Zhang Q, Chen G et al (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev. B 66:165440CrossRef Yang DJ, Zhang Q, Chen G et al (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev. B 66:165440CrossRef
40.
go back to reference Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef
41.
go back to reference Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61:605–668CrossRef Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61:605–668CrossRef
42.
go back to reference Sukhadolau AV, Ivakin EV, Ralchenko VG, Khomich AV, Vlasov AV, Popovich AF (2005) Thermal conductivity of CVD diamond at elevated temperatures Diamond. Relat Mater 14:589–593CrossRef Sukhadolau AV, Ivakin EV, Ralchenko VG, Khomich AV, Vlasov AV, Popovich AF (2005) Thermal conductivity of CVD diamond at elevated temperatures Diamond. Relat Mater 14:589–593CrossRef
43.
go back to reference David GC, Wayne KF, Kenneth EG et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818CrossRef David GC, Wayne KF, Kenneth EG et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818CrossRef
44.
go back to reference Huxtable ST, Cahill DG, Shenogin S et al (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734CrossRef Huxtable ST, Cahill DG, Shenogin S et al (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734CrossRef
45.
go back to reference Mukhopadhyay A, Otieno G, Chu BTT, Wallwork A, Green MLH, Todd RI (2011) Thermal and electrical properties of aluminoborosilicate glass-ceramics containing multiwalled carbon nanotubes. Scr Mater 65:408–411CrossRef Mukhopadhyay A, Otieno G, Chu BTT, Wallwork A, Green MLH, Todd RI (2011) Thermal and electrical properties of aluminoborosilicate glass-ceramics containing multiwalled carbon nanotubes. Scr Mater 65:408–411CrossRef
46.
go back to reference Nan CW, Liu G, Lin YH, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551CrossRef Nan CW, Liu G, Lin YH, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551CrossRef
47.
go back to reference Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375:666–669CrossRef Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375:666–669CrossRef
48.
go back to reference Sivakumar R, Guo S, Nishimura T, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56:265–268CrossRef Sivakumar R, Guo S, Nishimura T, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56:265–268CrossRef
49.
go back to reference Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644CrossRef Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644CrossRef
50.
go back to reference Chu K, Guo H, Jia C et al (2010) Thermal properties of carbon nanotube-copper composites for thermal management applications. Nanoscale Res Lett 5:868–874CrossRef Chu K, Guo H, Jia C et al (2010) Thermal properties of carbon nanotube-copper composites for thermal management applications. Nanoscale Res Lett 5:868–874CrossRef
51.
go back to reference Zhang HL, Li JF, Yao KF, Chen LD (2005) Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J Appl Phys 97:114310CrossRef Zhang HL, Li JF, Yao KF, Chen LD (2005) Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J Appl Phys 97:114310CrossRef
Metadata
Title
Thermal conductivities of alumina-based multiwall carbon nanotube ceramic composites
Authors
Kaleem Ahmad
Pan Wei
Chunlei Wan
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8327-8

Other articles of this Issue 17/2014

Journal of Materials Science 17/2014 Go to the issue

Premium Partners