Skip to main content
Top

2018 | OriginalPaper | Chapter

Thermal Convection in the van der Waals Fluid

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the van der Waals fluid model, a diffuse-interface model for liquid–vapor two-phase flows, is numerically investigated. The thermodynamic properties of the van der Waals fluid are first studied. Dimensional analysis is performed to identify the control parameters for the system. An entropy-stable numerical scheme and isogeometric analysis are utilized to discretize the governing equations for numerical simulations. The steady state solution at low Rayleigh number is presented, demonstrating the capability of the model in describing liquid–vapor phase transitions. Next, two-dimensional nucleate and film boiling are simulated, showing the applicability of the model in different regimes of boiling. In the last, the heat transport property of the van der Waals model is numerically investigated. The scaling law for the Nusselt number with respect to the Rayleigh number in the van der Waals model is obtained by performing a suite of high-resolution simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Accary, P. Bontoux, and B. Zappoli. Turbulent Rayleigh-Bénard convection in a near-critical fluid by three-dimensional direct numerical simulation. Journal of Fluid Mechanics, 619:127–145, 2008.CrossRef G. Accary, P. Bontoux, and B. Zappoli. Turbulent Rayleigh-Bénard convection in a near-critical fluid by three-dimensional direct numerical simulation. Journal of Fluid Mechanics, 619:127–145, 2008.CrossRef
2.
go back to reference G. Ahlers, S. Grossmann, and D. Lohse. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 81:503–537, 2009.CrossRef G. Ahlers, S. Grossmann, and D. Lohse. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 81:503–537, 2009.CrossRef
3.
go back to reference S. Balay, W.D. Gropp, L.C. McInnes, and B.F. Smith. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries. In E. Arge, A.M. Bruaset, and H.P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997. S. Balay, W.D. Gropp, L.C. McInnes, and B.F. Smith. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries. In E. Arge, A.M. Bruaset, and H.P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.
4.
go back to reference R.P. Behringer. Rayleigh-Bénard convection and turbulence in liquid helium. Reviews of Modern Physics, 57:657, 1985.CrossRef R.P. Behringer. Rayleigh-Bénard convection and turbulence in liquid helium. Reviews of Modern Physics, 57:657, 1985.CrossRef
5.
go back to reference L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi. Convection in multiphase fluid flows using lattice boltzmann methods. Physical Review Letters, 108:104502, 2012.CrossRef L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi. Convection in multiphase fluid flows using lattice boltzmann methods. Physical Review Letters, 108:104502, 2012.CrossRef
6.
go back to reference S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover, 1981. S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover, 1981.
7.
go back to reference Q. Chang and J.I.D. Alexander. Application of the lattice Boltzmann method to two-phase Rayleigh-Benard convection with a deformable interface. Journal of Computational Physics, 212:473–489, 2006.MathSciNetCrossRef Q. Chang and J.I.D. Alexander. Application of the lattice Boltzmann method to two-phase Rayleigh-Benard convection with a deformable interface. Journal of Computational Physics, 212:473–489, 2006.MathSciNetCrossRef
8.
go back to reference P.G. Drazin and W.H. Reid. Hydrodynamic Stability. Cambridge University Press, 1981. P.G. Drazin and W.H. Reid. Hydrodynamic Stability. Cambridge University Press, 1981.
9.
go back to reference J.E. Dunn and J. Serrin. On the thermomechanics of interstitial working. Archive for Rational Mechanics and Analysis, 88:95–133, 1985.MathSciNetCrossRef J.E. Dunn and J. Serrin. On the thermomechanics of interstitial working. Archive for Rational Mechanics and Analysis, 88:95–133, 1985.MathSciNetCrossRef
10.
go back to reference M.O. McLinden E.W. Lemmon and D.G. Friend. Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. (retrieved February 11, 2016). M.O. McLinden E.W. Lemmon and D.G. Friend. Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. (retrieved February 11, 2016).
11.
go back to reference A. Furukawa and A. Onuki. Convective heat transport in compressible fluids. Physical Review E, 66:016302, 2002.CrossRef A. Furukawa and A. Onuki. Convective heat transport in compressible fluids. Physical Review E, 66:016302, 2002.CrossRef
12.
go back to reference M.E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermodynamics of Continua. Cambridge University Press, 2009. M.E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermodynamics of Continua. Cambridge University Press, 2009.
13.
go back to reference T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.MathSciNetCrossRef T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.MathSciNetCrossRef
14.
go back to reference D.C. Johnston. Advances in Thermodynamics of the van der Waals Fluid. Morgan & Claypool Publishers, 2014.CrossRef D.C. Johnston. Advances in Thermodynamics of the van der Waals Fluid. Morgan & Claypool Publishers, 2014.CrossRef
15.
go back to reference D. Juric and G. Tryggvason. Computations of boiling flows. International Journal of Multiphase Flow, 24:387–410, 1998.CrossRef D. Juric and G. Tryggvason. Computations of boiling flows. International Journal of Multiphase Flow, 24:387–410, 1998.CrossRef
16.
go back to reference D.J. Korteweg. Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl., 6(2):1–24, 1901.MATH D.J. Korteweg. Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl., 6(2):1–24, 1901.MATH
17.
go back to reference R. Lakkaraju, R.J.A.M. Stevens, P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti. Heat transport in bubbling turbulent convection. Proceedings of the National Academy of Sciences of the United States of America, 110:9237–9242, 2013.CrossRef R. Lakkaraju, R.J.A.M. Stevens, P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti. Heat transport in bubbling turbulent convection. Proceedings of the National Academy of Sciences of the United States of America, 110:9237–9242, 2013.CrossRef
18.
go back to reference L.D. Landau and E.M. Lifshitz. Fluid mechanics, volume 6 of Course of Theoretical Physics. Butterworth-Heinemann, 1987. L.D. Landau and E.M. Lifshitz. Fluid mechanics, volume 6 of Course of Theoretical Physics. Butterworth-Heinemann, 1987.
19.
go back to reference J. Liu. Thermodynamically Consistent Modeling and Simulation of Multiphase Flows. PhD thesis, The University of Texas at Austin, 2014. J. Liu. Thermodynamically Consistent Modeling and Simulation of Multiphase Flows. PhD thesis, The University of Texas at Austin, 2014.
20.
go back to reference J. Liu, H. Gomez, J.A. Evans, T.J.R. Hughes, and C.M. Landis. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations. Journal of Computational Physics, 248:47–86, 2013.MathSciNetCrossRef J. Liu, H. Gomez, J.A. Evans, T.J.R. Hughes, and C.M. Landis. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations. Journal of Computational Physics, 248:47–86, 2013.MathSciNetCrossRef
21.
go back to reference J. Liu, C.M. Landis, H. Gomez, and T.J.R. Hughes. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations. Computer Methods in Applied Mechanics and Engineering, 297:476–553, 2015.MathSciNetCrossRef J. Liu, C.M. Landis, H. Gomez, and T.J.R. Hughes. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations. Computer Methods in Applied Mechanics and Engineering, 297:476–553, 2015.MathSciNetCrossRef
23.
go back to reference P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti. Heat transfer mechanisms in bubbly Rayleigh-Bénard convection. Physical Review E, 80:026304, 2009.CrossRef P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti. Heat transfer mechanisms in bubbly Rayleigh-Bénard convection. Physical Review E, 80:026304, 2009.CrossRef
24.
go back to reference J.S. Rowlinson. Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 20:200–244, 1979.MathSciNetCrossRef J.S. Rowlinson. Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 20:200–244, 1979.MathSciNetCrossRef
25.
go back to reference X. Shan. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical Review E, 55:2780, 1997.CrossRef X. Shan. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical Review E, 55:2780, 1997.CrossRef
26.
go back to reference J Sommeria. Turbulence: The elusive ‘ultimate state’ of thermal convection. Nature, 398:294–295, 1999.CrossRef J Sommeria. Turbulence: The elusive ‘ultimate state’ of thermal convection. Nature, 398:294–295, 1999.CrossRef
27.
go back to reference P.J. Tackley. Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. Journal of Geophysical Research, 101:3311–3332, 1996.CrossRef P.J. Tackley. Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. Journal of Geophysical Research, 101:3311–3332, 1996.CrossRef
28.
go back to reference A. Tilgner. Convection in an ideal gas at high Rayleigh numbers. Physical Review E, 84:026323, 2011.CrossRef A. Tilgner. Convection in an ideal gas at high Rayleigh numbers. Physical Review E, 84:026323, 2011.CrossRef
29.
go back to reference K.Q. Xia. Current trends and future directions in turbulent thermal convection. Theoretical and Applied Mechanics Letters, 3:052001, 2013.CrossRef K.Q. Xia. Current trends and future directions in turbulent thermal convection. Theoretical and Applied Mechanics Letters, 3:052001, 2013.CrossRef
Metadata
Title
Thermal Convection in the van der Waals Fluid
Author
Ju Liu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96469-0_9

Premium Partners