Skip to main content
Top

2022 | OriginalPaper | Chapter

Thermal Energy Storage

Authors : Rainer Tamme, Doerte Laing, Wolf-Dieter Steinmann, Thomas Bauer

Published in: Solar Thermal Energy

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Latent heat storage
It is connected with a phase transformation of the storage materials (phase change materials – PCM), typically changing their physical phase from solid to liquid and vice versa. The phase change is always coupled with the absorption or release of heat and occurs at a constant temperature. Thus, the heat added or released cannot be sensed and appears to be latent. Stored energy is equivalent to the heat (enthalpy) for melting and freezing.
Sensible heat storage
It results in an increase or decrease of the storage material temperature, and the stored energy is proportional to the temperature difference of the used materials.
Thermochemical heat storage
It is based on reversible thermochemical reactions. The energy is stored in the form of chemical compounds created by an endothermic reaction and it is recovered again by recombining the compounds in an exothermic reaction. The heat stored and released is equivalent to the heat (enthalpy) of reaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Laing D, Steinmann W-D, Tamme R, Richter C (2006) Solid media thermal storage for parabolic trough power plants. Sol Energy 80:1283–1289CrossRef Laing D, Steinmann W-D, Tamme R, Richter C (2006) Solid media thermal storage for parabolic trough power plants. Sol Energy 80:1283–1289CrossRef
2.
go back to reference Laing D, Steinmann W-D, Fiß M, Tamme R, Brand T, Bahl C (2008) Solid media thermal storage development and analysis of modular storage operation concepts for parabolic trough power plants. J Sol Energy Eng 130:011006-1/5 Laing D, Steinmann W-D, Fiß M, Tamme R, Brand T, Bahl C (2008) Solid media thermal storage development and analysis of modular storage operation concepts for parabolic trough power plants. J Sol Energy Eng 130:011006-1/5
3.
go back to reference Goldstein M (1961) Some physical chemical aspects of heat storage. In: U.N. Conference on new sources of energy, vol 35, Rome, pp 5–7 Goldstein M (1961) Some physical chemical aspects of heat storage. In: U.N. Conference on new sources of energy, vol 35, Rome, pp 5–7
4.
go back to reference Telkes M (1974) Solar energy storage. ASHRAE J 16:38–44 Telkes M (1974) Solar energy storage. ASHRAE J 16:38–44
5.
go back to reference Altmann M, Yeh H, Lorsch HG (1973) Conservation and better utilization of electric power by means of thermal energy storage and solar heating. Final summary report, NSF/RANN/SE/G/27976/PR 73/5, University of Pennsylvania Altmann M, Yeh H, Lorsch HG (1973) Conservation and better utilization of electric power by means of thermal energy storage and solar heating. Final summary report, NSF/RANN/SE/G/27976/PR 73/5, University of Pennsylvania
6.
go back to reference Lorsch HG (1974) Thermal energy storage. Final report, NSF/RANN/74-021C Lorsch HG (1974) Thermal energy storage. Final report, NSF/RANN/74-021C
7.
go back to reference Carlson B, Stymme H, Wettermark G (1978) Storage of low-temperature heat in salt-hydrate melts – calcium chloride hexahydrate. Swedish Council for Building. Research D 12, Stockholm Carlson B, Stymme H, Wettermark G (1978) Storage of low-temperature heat in salt-hydrate melts – calcium chloride hexahydrate. Swedish Council for Building. Research D 12, Stockholm
8.
go back to reference Ozawa T et al (1980) Screening of latent heat thermal energy storage materials by using evaluated thermodynamic data. In: 7th Codata international conference, Kyoto Ozawa T et al (1980) Screening of latent heat thermal energy storage materials by using evaluated thermodynamic data. In: 7th Codata international conference, Kyoto
9.
go back to reference Mar RW (1980) Material science issues encountered during the development of thermochemical concepts. In: Murr LE (ed) Solar materials science. Academic, London Mar RW (1980) Material science issues encountered during the development of thermochemical concepts. In: Murr LE (ed) Solar materials science. Academic, London
10.
go back to reference Mehling H, Cabeza LF (2008) Heat and cold storage with PCM – an up to date introduction into basics and applications. Springer, Heidelberg Mehling H, Cabeza LF (2008) Heat and cold storage with PCM – an up to date introduction into basics and applications. Springer, Heidelberg
11.
go back to reference Bauer T, Laing D, Steinmann WD, Kröner U, Tamme R (2008) Screening of phase change materials for process heat applications in the temperature range 120 to 250 °C. In: Proceedings of Eurosun, Lisbon, 7–10 Oct 2008 Bauer T, Laing D, Steinmann WD, Kröner U, Tamme R (2008) Screening of phase change materials for process heat applications in the temperature range 120 to 250 °C. In: Proceedings of Eurosun, Lisbon, 7–10 Oct 2008
12.
go back to reference Tamme R, Bauer T, Buschle J, Laing D, Müller-Steinhagen H, Steinmann W-D (2008) Latent heat storage above 1208 °C for applications in the industrial process heat sector and solar power generation. Int J Energy Res 32:264–271CrossRef Tamme R, Bauer T, Buschle J, Laing D, Müller-Steinhagen H, Steinmann W-D (2008) Latent heat storage above 1208 °C for applications in the industrial process heat sector and solar power generation. Int J Energy Res 32:264–271CrossRef
13.
go back to reference Steinmann W-D, Tamme R (2008) Latent heat storage for solar steam systems. J Sol Energy Eng 130:011004-1/5 Steinmann W-D, Tamme R (2008) Latent heat storage for solar steam systems. J Sol Energy Eng 130:011004-1/5
14.
go back to reference Wenthworth WE, Chen F (1976) Simple thermal decomposition reactions for storage of solar thermal energy. Sol Energy 18:205–214CrossRef Wenthworth WE, Chen F (1976) Simple thermal decomposition reactions for storage of solar thermal energy. Sol Energy 18:205–214CrossRef
15.
go back to reference Schaube F, Wörner A, Tamme R (2010) High temperature thermo-chemical heat storage for CSP using gas-solid reactions. In: Proceedings of SolarPACES 2010, Perpignan Schaube F, Wörner A, Tamme R (2010) High temperature thermo-chemical heat storage for CSP using gas-solid reactions. In: Proceedings of SolarPACES 2010, Perpignan
16.
go back to reference Wong B, Brown L, Schaube F, Tamme R, Sattler C (2010) Oxide based thermochemical heat storage. In: Proceedings of SolarPACES 2010, Perpignan Wong B, Brown L, Schaube F, Tamme R, Sattler C (2010) Oxide based thermochemical heat storage. In: Proceedings of SolarPACES 2010, Perpignan
17.
go back to reference Stobbe ER, de Boer BA, Geus JW (1999) The reduction and oxidation behaviour of manganese oxides. Catal Today 47:161–167CrossRef Stobbe ER, de Boer BA, Geus JW (1999) The reduction and oxidation behaviour of manganese oxides. Catal Today 47:161–167CrossRef
18.
go back to reference Zaki MI et al (1998) Thermochemistry of manganese oxides in reactive gas atmospheres: probing catalytic MnOx compositions in the atmosphere of CO+O2. Thermochim Acta 311:97–103CrossRef Zaki MI et al (1998) Thermochemistry of manganese oxides in reactive gas atmospheres: probing catalytic MnOx compositions in the atmosphere of CO+O2. Thermochim Acta 311:97–103CrossRef
19.
go back to reference Lovegrove K et al (2004) Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 76:331–337CrossRef Lovegrove K et al (2004) Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 76:331–337CrossRef
20.
go back to reference Buck R et al (1994) Development of a volumetric receiver-reactor for solar methane reforming. J Sol Energy Eng 116:73–78 Buck R et al (1994) Development of a volumetric receiver-reactor for solar methane reforming. J Sol Energy Eng 116:73–78
21.
go back to reference Beckmann G, Gilli PV (1984) Thermal energy storage. Springer, Berlin Beckmann G, Gilli PV (1984) Thermal energy storage. Springer, Berlin
22.
go back to reference Dinter F, Geyer M, Tamme R (1990) Thermal energy storage for commercial applications. Springer, Berlin Dinter F, Geyer M, Tamme R (1990) Thermal energy storage for commercial applications. Springer, Berlin
23.
go back to reference Herrmann U, Kearney D (2002) Survey of thermal energy storage for parabolic trough power plants. J Sol Energy Eng 124:145–152CrossRef Herrmann U, Kearney D (2002) Survey of thermal energy storage for parabolic trough power plants. J Sol Energy Eng 124:145–152CrossRef
24.
go back to reference Pacheco JE (2002) Final test and evaluation results from the solar two project. Sandia National Laboratories, SAND2002-0120 Pacheco JE (2002) Final test and evaluation results from the solar two project. Sandia National Laboratories, SAND2002-0120
25.
go back to reference Goldstern W (1970) Steam storage installation. Pergamon Press, Oxford Goldstern W (1970) Steam storage installation. Pergamon Press, Oxford
26.
go back to reference Steinmann WD, Eck M (2006) Buffer storage for direct steam generation. Sol Energy 80:1277–1282, ElsevierCrossRef Steinmann WD, Eck M (2006) Buffer storage for direct steam generation. Sol Energy 80:1277–1282, ElsevierCrossRef
27.
go back to reference Laing D, Bahl C, Fiß M (2010) Commisioning of a thermal energy storage system for direct steam generation. In: Proceedings. SolarPACES 2010, Perpignan, 21–24 Sept 2010 Laing D, Bahl C, Fiß M (2010) Commisioning of a thermal energy storage system for direct steam generation. In: Proceedings. SolarPACES 2010, Perpignan, 21–24 Sept 2010
28.
go back to reference Kelly B, Kearney D (2006) Thermal storage commercial plant design study for a 2-tank indirect molten salt system. NREL/SR-550-40166 Kelly B, Kearney D (2006) Thermal storage commercial plant design study for a 2-tank indirect molten salt system. NREL/SR-550-40166
29.
go back to reference Relloso S, Delgado E (2009) Experience with molten salt thermal storage in a commercial parabolic trough plant. In: Proceedings of the SolarPACES 2009, Berlin Relloso S, Delgado E (2009) Experience with molten salt thermal storage in a commercial parabolic trough plant. In: Proceedings of the SolarPACES 2009, Berlin
30.
go back to reference Kolb GJ (2010) Evaluation of annual performance of 2-tank and thermocline thermal storage system for trough plants. In: Proceedings of the SolarPACES 2010, Perpignan Kolb GJ (2010) Evaluation of annual performance of 2-tank and thermocline thermal storage system for trough plants. In: Proceedings of the SolarPACES 2010, Perpignan
32.
go back to reference Janz GJ et al (1979) Physical properties data compilation relevant to energy storage II. Molten salts: data on single and multi-component salt systems. NSRDS-National Standard Reference Data System Janz GJ et al (1979) Physical properties data compilation relevant to energy storage II. Molten salts: data on single and multi-component salt systems. NSRDS-National Standard Reference Data System
33.
go back to reference Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D (2010) Thermal energy storage for direct steam generation. Sol Energy 85:627–633CrossRef Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D (2010) Thermal energy storage for direct steam generation. Sol Energy 85:627–633CrossRef
34.
go back to reference Romero M et al (2002) An update on solar central receiver systems, projects, and technologies. ASME J Sol Energy Eng 124:98–108CrossRef Romero M et al (2002) An update on solar central receiver systems, projects, and technologies. ASME J Sol Energy Eng 124:98–108CrossRef
35.
go back to reference Pitz-Paal R et al (2005) European concentrated solar thermal road-mapping (ECOSTAR): roadmap document. SES-CT-2003-502578 Pitz-Paal R et al (2005) European concentrated solar thermal road-mapping (ECOSTAR): roadmap document. SES-CT-2003-502578
36.
go back to reference Price H (2002) Assessment of parabolic trough and power tower solar technology cost and performance forecasts. Sargent & Lundy, NREL/SR-550-34440 Price H (2002) Assessment of parabolic trough and power tower solar technology cost and performance forecasts. Sargent & Lundy, NREL/SR-550-34440
37.
go back to reference Haeger M et al (1994) Phoebus technology program solar air receiver (TSA). Operational experiences with the experimental set-up of a 2.5 MWth volumetric air receiver (TSA) at the plataforma solar de Almería. PSA-TR02/94 Haeger M et al (1994) Phoebus technology program solar air receiver (TSA). Operational experiences with the experimental set-up of a 2.5 MWth volumetric air receiver (TSA) at the plataforma solar de Almería. PSA-TR02/94
38.
go back to reference Fricker HW (2004) Regenerative thermal storage in atmospheric air system solar power plants. Energy 29:871–881CrossRef Fricker HW (2004) Regenerative thermal storage in atmospheric air system solar power plants. Energy 29:871–881CrossRef
39.
go back to reference Zunft S, Hänel M, Krüger M, Dreissigacker V, Göhring F, Wahl E (2010) Jülich solar power tower – experimental evaluation of the storage subsystem and performance calculations. In: Proceedings of the SolarPACES 2010 conference (SolarPACES 2010), Perpignan, 21–24 Sept 2010 Zunft S, Hänel M, Krüger M, Dreissigacker V, Göhring F, Wahl E (2010) Jülich solar power tower – experimental evaluation of the storage subsystem and performance calculations. In: Proceedings of the SolarPACES 2010 conference (SolarPACES 2010), Perpignan, 21–24 Sept 2010
40.
go back to reference Zunft S, Hänel M, Krüger M, Dreißigacker V (2009) High-temperature heat storage for air-cooled solar central receiver plants: a design study. In: Proceedings of the SolarPACES 2009, Berlin, 15–18 Sept 2009 Zunft S, Hänel M, Krüger M, Dreißigacker V (2009) High-temperature heat storage for air-cooled solar central receiver plants: a design study. In: Proceedings of the SolarPACES 2009, Berlin, 15–18 Sept 2009
41.
go back to reference Dreißigacker V, Müller-Steinhagen H, Zunft S (2010) Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat Mass Transf 46:1199–1207CrossRef Dreißigacker V, Müller-Steinhagen H, Zunft S (2010) Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat Mass Transf 46:1199–1207CrossRef
Metadata
Title
Thermal Energy Storage
Authors
Rainer Tamme
Doerte Laing
Wolf-Dieter Steinmann
Thomas Bauer
Copyright Year
2022
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-0716-1422-8_684