Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Thermal Properties of Solids and the Size Effect

Author : Zhuomin M. Zhang

Published in: Nano/Microscale Heat Transfer

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter focuses on simple phonon theory and electronic theory of the specific heat, thermal conductivity, and thermoelectricity of metals and insulators. The Boltzmann transport equation (BTE) has been used to facilitate the understanding of microscopic behavior, together with the quantum statistics of phonons and electrons. The quantum size effect on phonon specific heat is extensively covered. Examples are given to analyze direct thermoelectric conversion for temperature measurement, power generation, and refrigeration. Furthermore, a detailed treatment of classical size effect on thermal conductivity is presented. Finally, the concepts of quantum electrical conductance and thermal conductance are introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M.I. Flik, B.I. Choi, K.E. Goodson, Heat transfer regimes in microstructures. J. Heat Transf. 114, 666–674 (1992) M.I. Flik, B.I. Choi, K.E. Goodson, Heat transfer regimes in microstructures. J. Heat Transf. 114, 666–674 (1992)
2.
go back to reference C.L. Tien, G. Chen, Challenges in microscale conductive and radiative heat transfer. J. Heat Transf. 116, 799–807 (1994) C.L. Tien, G. Chen, Challenges in microscale conductive and radiative heat transfer. J. Heat Transf. 116, 799–807 (1994)
3.
go back to reference D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223–241 (2002) D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223–241 (2002)
4.
go back to reference D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport, J. Appl. Phys. 93, 793–818 (2003); D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014) D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport, J. Appl. Phys. 93, 793–818 (2003); D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)
5.
go back to reference C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)MATH C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)MATH
6.
go back to reference N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, Fort Worth, TX, 1976)MATH N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, Fort Worth, TX, 1976)MATH
7.
go back to reference Y.S. Touloukian, E.H. Buyco (eds.), Thermophysical Properties of Matter, Vol. 4: Specific Heat – Metallic Elements and Alloys; Vol. 5: Specific Heat – Nonmetallic Solids (IFI/Plenum, New York, 1970) Y.S. Touloukian, E.H. Buyco (eds.), Thermophysical Properties of Matter, Vol. 4: Specific Heat – Metallic Elements and Alloys; Vol. 5: Specific Heat – Nonmetallic Solids (IFI/Plenum, New York, 1970)
8.
go back to reference G. Nilsson, S. Rolandson, Lattice dynamics of copper at 80 K. Phys. Rev. B 7, 2393–2400 (1973) G. Nilsson, S. Rolandson, Lattice dynamics of copper at 80 K. Phys. Rev. B 7, 2393–2400 (1973)
9.
go back to reference A.J.E. Foreman, Anharmonic specific heat of solids. Proc. Phys. Soc. (London) 79, 1124–1141 (1962) A.J.E. Foreman, Anharmonic specific heat of solids. Proc. Phys. Soc. (London) 79, 1124–1141 (1962)
10.
go back to reference R.A. MacDonald, W.M. MacDonald, Thermodynamic properties of fcc metals at high temperatures. Phys. Rev. B 24, 1715–1724 (1981) R.A. MacDonald, W.M. MacDonald, Thermodynamic properties of fcc metals at high temperatures. Phys. Rev. B 24, 1715–1724 (1981)
11.
go back to reference V. Novotny, P.P.M. Meincke, J.H.P. Watson, Effect of size and surface on the specific heat of small lead particles. Phys. Rev. Lett. 28, 901–903 (1972); V. Novotny, P.P.M. Meincke, Thermodynamic lattice and electric properties of small particles. Phys. Rev. B 8, 4186–4199 (1973) V. Novotny, P.P.M. Meincke, J.H.P. Watson, Effect of size and surface on the specific heat of small lead particles. Phys. Rev. Lett. 28, 901–903 (1972); V. Novotny, P.P.M. Meincke, Thermodynamic lattice and electric properties of small particles. Phys. Rev. B 8, 4186–4199 (1973)
12.
go back to reference W. Yi, L. Lu, D.-L. Zhang, Z.W. Pan, S.S. Xie, Linear specific heat of carbon nanotubes. Phys. Rev. B 59, R9015–R9018 (1999) W. Yi, L. Lu, D.-L. Zhang, Z.W. Pan, S.S. Xie, Linear specific heat of carbon nanotubes. Phys. Rev. B 59, R9015–R9018 (1999)
13.
go back to reference C. Dames, B. Poudel, W.Z. Wang, J.Y. Huang, Z.F. Ren, Y. Sun, J.I. Oh, C. Opeil, M.J. Naughton, G. Chen, Low-dimensional phonon specific heat of titanium dioxide nanotubes. Appl. Phys. Lett. 87, 031901 (2005) C. Dames, B. Poudel, W.Z. Wang, J.Y. Huang, Z.F. Ren, Y. Sun, J.I. Oh, C. Opeil, M.J. Naughton, G. Chen, Low-dimensional phonon specific heat of titanium dioxide nanotubes. Appl. Phys. Lett. 87, 031901 (2005)
14.
go back to reference A.A. Valladares, The Debye specific heat in n dimensions. Am. J. Phys. 43, 308–311 (1975) A.A. Valladares, The Debye specific heat in n dimensions. Am. J. Phys. 43, 308–311 (1975)
15.
go back to reference A.J. McNamara, B.J. Lee, Z.M. Zhang, Quantum size effect on the lattice specific heat of nanostructures. Nanoscale Microscale Thermophys. Eng. 14, 1–20 (2010) A.J. McNamara, B.J. Lee, Z.M. Zhang, Quantum size effect on the lattice specific heat of nanostructures. Nanoscale Microscale Thermophys. Eng. 14, 1–20 (2010)
16.
go back to reference W. DeSorbo, W.W. Tyler, The specific heat of graphite from 13 to 300 K. J. Chem. Phys. 21, 1660–1663 (1953) W. DeSorbo, W.W. Tyler, The specific heat of graphite from 13 to 300 K. J. Chem. Phys. 21, 1660–1663 (1953)
17.
go back to reference R.S. Prasher, P.E. Phelan, Size effect on the thermodynamic properties of thin solid films. J. Heat Transf. 120, 1078–1081 (1998); R.S. Prasher, P.E. Phelan, Non-dimensional size effects on the thermodynamic properties of solids. Int. J. Heat Mass Transf. 42, 1991–2001 (1999) R.S. Prasher, P.E. Phelan, Size effect on the thermodynamic properties of thin solid films. J. Heat Transf. 120, 1078–1081 (1998); R.S. Prasher, P.E. Phelan, Non-dimensional size effects on the thermodynamic properties of solids. Int. J. Heat Mass Transf. 42, 1991–2001 (1999)
18.
go back to reference Y. Zhang, J.X. Cao, Y. Xiao, X.H. Yan, Phonon spectrum and specific heat of silicon nanowires. J. Appl. Phys. 102, 104303 (2007) Y. Zhang, J.X. Cao, Y. Xiao, X.H. Yan, Phonon spectrum and specific heat of silicon nanowires. J. Appl. Phys. 102, 104303 (2007)
19.
go back to reference Y. Zhou, X. Zhang, M. Hu, Nonmonotonic diameter dependence of thermal conductivity of extremely thin Si nanowires: competition between hydrodynamic phonon flow and boundary scattering. Nano Lett. 17, 1269–1276 (2017) Y. Zhou, X. Zhang, M. Hu, Nonmonotonic diameter dependence of thermal conductivity of extremely thin Si nanowires: competition between hydrodynamic phonon flow and boundary scattering. Nano Lett. 17, 1269–1276 (2017)
20.
go back to reference Z. Rashid, L. Zhu, W. Li, Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires. Phys. Rev. B 97, 075441 (2018) Z. Rashid, L. Zhu, W. Li, Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires. Phys. Rev. B 97, 075441 (2018)
21.
go back to reference H.P. Baltes, E.R. Hilf, Specific heat of lead grains. Solid State Commun. 12, 369–373 (1973) H.P. Baltes, E.R. Hilf, Specific heat of lead grains. Solid State Commun. 12, 369–373 (1973)
22.
go back to reference R. Lautenschlager, Improved theory of the vibrational specific heat of lead grains. Solid State Commun. 16, 1331–1334 (1975) R. Lautenschlager, Improved theory of the vibrational specific heat of lead grains. Solid State Commun. 16, 1331–1334 (1975)
23.
go back to reference M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000) M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)
24.
go back to reference J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fischer, Quantized phonon spectrum of single-wall carbon nanotubes. Science 289, 1730–1733 (2000); W.A. de Heer, A question of dimensions. Science 289, 1702–1703 (2000) J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fischer, Quantized phonon spectrum of single-wall carbon nanotubes. Science 289, 1730–1733 (2000); W.A. de Heer, A question of dimensions. Science 289, 1702–1703 (2000)
25.
go back to reference J. Zimmermann, P. Pavone, G. Cuniberti, Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model. Phys. Rev. B 78, 045410 (2008) J. Zimmermann, P. Pavone, G. Cuniberti, Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model. Phys. Rev. B 78, 045410 (2008)
26.
go back to reference R. Denton, B. Muhlschlegel, D.J. Scalapino, Thermodynamic properties of electrons in small metal particles. Phys. Rev. B 7, 3589–3607 (1973) R. Denton, B. Muhlschlegel, D.J. Scalapino, Thermodynamic properties of electrons in small metal particles. Phys. Rev. B 7, 3589–3607 (1973)
27.
go back to reference W.P. Halperin, Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986) W.P. Halperin, Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986)
28.
go back to reference Z.M. Zhang, Clarification of the relation between drift velocity and relaxation time. J. Thermophys. Heat Transf. 26, 189–191 (2012) Z.M. Zhang, Clarification of the relation between drift velocity and relaxation time. J. Thermophys. Heat Transf. 26, 189–191 (2012)
29.
go back to reference J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, UK, 1960); reprinted in the Oxford Classics Series, 2001 J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, UK, 1960); reprinted in the Oxford Classics Series, 2001
30.
go back to reference R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147–1298 (1979) R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147–1298 (1979)
31.
go back to reference Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens (eds.), Thermophysical Properties of Matter, Vol. 1: Thermal Conductivity – Metallic Elements and Alloys; Vol. 2: Thermal Conductivity – Nonmetallic Solids (IFI/Plenum, New York, 1970) Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens (eds.), Thermophysical Properties of Matter, Vol. 1: Thermal Conductivity – Metallic Elements and Alloys; Vol. 2: Thermal Conductivity – Nonmetallic Solids (IFI/Plenum, New York, 1970)
32.
go back to reference D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disorderd crystals. Phys. Rev. B 46, 6131–6140 (1992) D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disorderd crystals. Phys. Rev. B 46, 6131–6140 (1992)
33.
go back to reference G.A. Slack, The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979) G.A. Slack, The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979)
34.
go back to reference M.C. Wingert, J. Zheng, S. Kwon, R. Chen, Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31, 113003 (2016) M.C. Wingert, J. Zheng, S. Kwon, R. Chen, Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31, 113003 (2016)
35.
go back to reference P.B. Allen, J.L. Feldman, Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993) P.B. Allen, J.L. Feldman, Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993)
36.
go back to reference P.B. Allen, J.L. Feldman, J. Fabian, F. Wooten, Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999) P.B. Allen, J.L. Feldman, J. Fabian, F. Wooten, Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999)
37.
go back to reference J.M. Larkin, A.J.H. McGaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014) J.M. Larkin, A.J.H. McGaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014)
38.
go back to reference M.T. Agne, R. Hanus, G.J. Snyder, Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ. Sci. 11, 609–616 (2018) M.T. Agne, R. Hanus, G.J. Snyder, Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ. Sci. 11, 609–616 (2018)
39.
go back to reference D.M. Leitner, Vibrational energy transfer and heat conduction in a one-dimensional glass. Phys. Rev. B 64, 094201 (2001) D.M. Leitner, Vibrational energy transfer and heat conduction in a one-dimensional glass. Phys. Rev. B 64, 094201 (2001)
40.
go back to reference W. Lv, H. Asegun, Non-negligible contributions to thermal conductivity from localized modes in amorphous silicon dioxide. Sci. Rep. 6, 35720 (2016) W. Lv, H. Asegun, Non-negligible contributions to thermal conductivity from localized modes in amorphous silicon dioxide. Sci. Rep. 6, 35720 (2016)
41.
go back to reference J. Moon, B. Latour, A.J. Minnich, Propagating elastic vibrations dominate thermal conduction in amorphous silicon. Phys. Rev. B 97, 024201 (2018) J. Moon, B. Latour, A.J. Minnich, Propagating elastic vibrations dominate thermal conduction in amorphous silicon. Phys. Rev. B 97, 024201 (2018)
42.
go back to reference C.L. Choy, Thermal conductivity of polymers. Polymer 18, 984–1004 (1977) C.L. Choy, Thermal conductivity of polymers. Polymer 18, 984–1004 (1977)
43.
go back to reference S. Kommandur, S.K. Yee, An empirical model to predict temperature-dependent thermal conductivity of amorphous polymers. J. Polymer Sci. B: Polymer Phys. 55, 1160–1170 (2017) S. Kommandur, S.K. Yee, An empirical model to predict temperature-dependent thermal conductivity of amorphous polymers. J. Polymer Sci. B: Polymer Phys. 55, 1160–1170 (2017)
44.
go back to reference X. Xie, K. Yang, D. Li, T.-H. Tsai, J. Shin, P.V. Braun, D.G. Cahill, High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017) X. Xie, K. Yang, D. Li, T.-H. Tsai, J. Shin, P.V. Braun, D.G. Cahill, High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017)
45.
go back to reference A. Henry, Thermal transport in polymers. Ann. Rev. Heat Transf. 17, 485–520 (2014) A. Henry, Thermal transport in polymers. Ann. Rev. Heat Transf. 17, 485–520 (2014)
46.
go back to reference H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polymer Sci. 59, 41–85 (2016) H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polymer Sci. 59, 41–85 (2016)
47.
go back to reference X. Xu, J. Chen, J. Zhou, B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30, 1705544 (2018) X. Xu, J. Chen, J. Zhou, B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30, 1705544 (2018)
48.
go back to reference M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B.V. Lebedev, B. Wunderlich, Heat Capacity of Poly(trimethylene terephthalate). J. Polymer Sci. B: Polymer Phys. 36, 2499–2511 (1998) M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B.V. Lebedev, B. Wunderlich, Heat Capacity of Poly(trimethylene terephthalate). J. Polymer Sci. B: Polymer Phys. 36, 2499–2511 (1998)
49.
go back to reference S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotech. 5, 251–255 (2010) S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotech. 5, 251–255 (2010)
50.
go back to reference R.E. Bentley, Theory and Practice of Thermoelectric Thermometry (Springer, Singapore, 1998) R.E. Bentley, Theory and Practice of Thermoelectric Thermometry (Springer, Singapore, 1998)
51.
go back to reference R.B. Roberts, The absolute scale of thermoelectricity II. Phil. Mag. B 43, 1125–1135 (1981) R.B. Roberts, The absolute scale of thermoelectricity II. Phil. Mag. B 43, 1125–1135 (1981)
52.
go back to reference O. Dreirach, The electrical resistivity and thermopower of solid noble metals. J. Phys. F: Met. Phys. 3, 577–584 (1973) O. Dreirach, The electrical resistivity and thermopower of solid noble metals. J. Phys. F: Met. Phys. 3, 577–584 (1973)
53.
go back to reference C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010) C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)
54.
go back to reference S.L. Soo, Direct Energy Conversion (Prentice-Hall, Englewood Cliffs, NJ, 1968) S.L. Soo, Direct Energy Conversion (Prentice-Hall, Englewood Cliffs, NJ, 1968)
55.
go back to reference L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993); M.S. Dresselhaus, Y.-M. Lin, O. Rabin, G. Dresselhaus, Bismuth nanowires for thermoelectric applications. Microscale Thermophys. Eng. 7, 207–219 (2003); Y.-M. Lin, M. S. Dresselhaus, Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003) L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993); M.S. Dresselhaus, Y.-M. Lin, O. Rabin, G. Dresselhaus, Bismuth nanowires for thermoelectric applications. Microscale Thermophys. Eng. 7, 207–219 (2003); Y.-M. Lin, M. S. Dresselhaus, Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003)
56.
go back to reference J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017) J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017)
57.
go back to reference Z. Tian, S. Lee, G. Chen, Comprehensive review of heat transfer in thermoelectric materials and devices. Ann. Rev. Heat Transf. 17, 425–483 (2014) Z. Tian, S. Lee, G. Chen, Comprehensive review of heat transfer in thermoelectric materials and devices. Ann. Rev. Heat Transf. 17, 425–483 (2014)
58.
go back to reference L. Onsager, Reciprocal relations in irreversible processes. I & II. Phys. Rev. 37, 405–426; 38, 2265–2279 (1931) L. Onsager, Reciprocal relations in irreversible processes. I & II. Phys. Rev. 37, 405–426; 38, 2265–2279 (1931)
59.
go back to reference H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)MATH H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)MATH
60.
go back to reference D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New York, 1998)MATH D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New York, 1998)MATH
61.
go back to reference D. Jou, G. Lebon, J. Casas-Vázquez, Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)MATH D. Jou, G. Lebon, J. Casas-Vázquez, Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)MATH
62.
go back to reference C.R. Tellier, A.J. Tosser, Size Effects in Thin Films (Elsevier, Amsterdam, 1982) C.R. Tellier, A.J. Tosser, Size Effects in Thin Films (Elsevier, Amsterdam, 1982)
63.
go back to reference M.I. Flik, C.L. Tien, Size effect on the thermal conductivity of high-Tc thin-film superconductors. J. Heat Transf. 112, 872–881 (1990) M.I. Flik, C.L. Tien, Size effect on the thermal conductivity of high-Tc thin-film superconductors. J. Heat Transf. 112, 872–881 (1990)
64.
go back to reference R.A. Richardson, F. Nori, Transport and boundary scattering in confined geometrics: analytical results. Phys. Rev. B 48, 15209–15217 (1993) R.A. Richardson, F. Nori, Transport and boundary scattering in confined geometrics: analytical results. Phys. Rev. B 48, 15209–15217 (1993)
65.
go back to reference J.E. Graebner, S. Jin, G.W. Kammlott, J.A. Herb, C.F. Gardinier, Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401–403 (1992) J.E. Graebner, S. Jin, G.W. Kammlott, J.A. Herb, C.F. Gardinier, Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401–403 (1992)
66.
go back to reference D. Stewart, P.M. Norris, Size effect on the thermal conductivity of thin metallic wires: Microscale implications. Microscale Thermophys. Eng. 4, 89–101 (2000) D. Stewart, P.M. Norris, Size effect on the thermal conductivity of thin metallic wires: Microscale implications. Microscale Thermophys. Eng. 4, 89–101 (2000)
67.
go back to reference S.G. Walkauskas, D.A. Broido, K. Kempa, T.L. Reinecke, Lattice thermal conductivity of wires. J. Appl. Phys. 85, 2579–2582 (1999) S.G. Walkauskas, D.A. Broido, K. Kempa, T.L. Reinecke, Lattice thermal conductivity of wires. J. Appl. Phys. 85, 2579–2582 (1999)
68.
go back to reference S. Kumar, G.C. Vradis, Thermal conductivity of thin metallic films. J. Heat Transfer 116, 28–34 (1994) S. Kumar, G.C. Vradis, Thermal conductivity of thin metallic films. J. Heat Transfer 116, 28–34 (1994)
69.
go back to reference P. Beckman, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House Inc, Norwood, MA, 1987) P. Beckman, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House Inc, Norwood, MA, 1987)
70.
go back to reference B. Feng, Z. Li, X. Zhang, Effect of grain-boundary scattering on the thermal conductivity of nanocrystalline metallic films. J. Phys. D Appl. Phys. 42, 055311 (2009) B. Feng, Z. Li, X. Zhang, Effect of grain-boundary scattering on the thermal conductivity of nanocrystalline metallic films. J. Phys. D Appl. Phys. 42, 055311 (2009)
71.
go back to reference J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932–2938 (2001) J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932–2938 (2001)
72.
go back to reference M. Asheghi, M.N. Touzelbaev, K.E. Goodson, Y.K. Leung, S.S. Wong, Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. 120, 30–36 (1998); M. Asheghi, K. Kurabayashi, R. Kasnavi, K.E. Goodson, Thermal conduction in doped single-crystal silicon films. J. Appl. Phys. 91, 5079–5088 (2002); W. Liu, M. Asheghi, Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128, 75–83 (2006) M. Asheghi, M.N. Touzelbaev, K.E. Goodson, Y.K. Leung, S.S. Wong, Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. 120, 30–36 (1998); M. Asheghi, K. Kurabayashi, R. Kasnavi, K.E. Goodson, Thermal conduction in doped single-crystal silicon films. J. Appl. Phys. 91, 5079–5088 (2002); W. Liu, M. Asheghi, Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128, 75–83 (2006)
73.
go back to reference D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003) D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)
74.
go back to reference P.G. Murphy, J.E. Moore, Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 76, 155313 (2007) P.G. Murphy, J.E. Moore, Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 76, 155313 (2007)
75.
go back to reference A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008) A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)
76.
go back to reference P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009) P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009)
77.
go back to reference H. Kim, I. Kim, H.-J. Choi, W. Kim, Thermal conductivities of Si1−xGex nanowires with different germanium concentrations and diameters. Appl. Phys. Lett. 96, 233106 (2010) H. Kim, I. Kim, H.-J. Choi, W. Kim, Thermal conductivities of Si1−xGex nanowires with different germanium concentrations and diameters. Appl. Phys. Lett. 96, 233106 (2010)
78.
go back to reference G. Xie, Y. Guo, X. Wei, K. Zhang, L. Sun, J. Zhong, G. Zhang, Y.-W. Zhang, Phonon mean free path spectrum and thermal conductivity for Si1−xGex nanowires. Appl. Phys. Lett. 104, 233901 (2014) G. Xie, Y. Guo, X. Wei, K. Zhang, L. Sun, J. Zhong, G. Zhang, Y.-W. Zhang, Phonon mean free path spectrum and thermal conductivity for Si1−xGex nanowires. Appl. Phys. Lett. 104, 233901 (2014)
79.
go back to reference A. Malhotra1, M. Maldovan, Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires. Sci. Rep. 6, 25818 (2016) A. Malhotra1, M. Maldovan, Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires. Sci. Rep. 6, 25818 (2016)
80.
go back to reference A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, M.S. Dresselhaus, K.A. Nelson, G. Chen, Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011) A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, M.S. Dresselhaus, K.A. Nelson, G. Chen, Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011)
81.
go back to reference F. Yang, C. Dames, Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013) F. Yang, C. Dames, Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013)
82.
go back to reference T. Shiga, D. Aketo, L. Feng, J. Shiomi, Harmonic phonon theory for calculating thermal conductivity spectrum from first-principles dispersion relations. Appl. Phys. Lett. 108, 201903 (2016) T. Shiga, D. Aketo, L. Feng, J. Shiomi, Harmonic phonon theory for calculating thermal conductivity spectrum from first-principles dispersion relations. Appl. Phys. Lett. 108, 201903 (2016)
83.
go back to reference P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65, 144306 (1999) P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65, 144306 (1999)
84.
go back to reference A.J. Kulkarni, M. Zhou, Size-dependent thermal conductivity of zinc oxide nanobelts. Appl. Phys. Lett. 88, 141921 (2006) A.J. Kulkarni, M. Zhou, Size-dependent thermal conductivity of zinc oxide nanobelts. Appl. Phys. Lett. 88, 141921 (2006)
85.
go back to reference R. Landauer, Spatial variation of currents and fields due to localized scatters in metallic conduction. IBM J. Res. Develop. 1, 223–231 (1957); R. Landauer, Conductance determined by transmission: probes and quantized constriction resistance. J. Phys.: Condens. Matter 1, 8099–8110 (1989); Y. Imry, R. Landauer, Conductance viewed as transmission. Rev. Mod. Phys. 71, S306–S312 (1999) R. Landauer, Spatial variation of currents and fields due to localized scatters in metallic conduction. IBM J. Res. Develop. 1, 223–231 (1957); R. Landauer, Conductance determined by transmission: probes and quantized constriction resistance. J. Phys.: Condens. Matter 1, 8099–8110 (1989); Y. Imry, R. Landauer, Conductance viewed as transmission. Rev. Mod. Phys. 71, S306–S312 (1999)
86.
go back to reference G. Rubio, N. Agraït, S. Vieira, Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996) G. Rubio, N. Agraït, S. Vieira, Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996)
87.
go back to reference N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003) N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003)
88.
go back to reference L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600–2606 (1996) L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600–2606 (1996)
89.
go back to reference S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998) S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998)
90.
go back to reference U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fraction. Science 248, 454–461 (1990) U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fraction. Science 248, 454–461 (1990)
91.
go back to reference U. Landman, W.D. Leudtke, B.E. Salisbury, R.L. Whetten, Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Phys. Rev. Lett. 77, 1362–1365 (1996) U. Landman, W.D. Leudtke, B.E. Salisbury, R.L. Whetten, Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Phys. Rev. Lett. 77, 1362–1365 (1996)
92.
go back to reference A. Greiner, L. Reggiani, T. Kuhn, L. Varani, Thermal conductivity and Lorenz number for one-dimensional ballistic transport. Phys. Rev. Lett. 78, 1114–1117 (1997) A. Greiner, L. Reggiani, T. Kuhn, L. Varani, Thermal conductivity and Lorenz number for one-dimensional ballistic transport. Phys. Rev. Lett. 78, 1114–1117 (1997)
93.
go back to reference K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000); K. Schwab, J.L. Arlett, J.M. Worlock, M.L. Roukes, Thermal conductance through discrete quantum channels. Physica E 9, 60–68 (2001) K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000); K. Schwab, J.L. Arlett, J.M. Worlock, M.L. Roukes, Thermal conductance through discrete quantum channels. Physica E 9, 60–68 (2001)
94.
go back to reference J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, 2514–2516 (1999) J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, 2514–2516 (1999)
95.
go back to reference S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000) S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000)
96.
go back to reference S. Maruyama, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophys. Eng. 7, 41–50 (2003) S. Maruyama, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophys. Eng. 7, 41–50 (2003)
97.
go back to reference P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001) P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)
98.
go back to reference C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005) C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005)
99.
go back to reference A.J. McNamara, Y. Joshi, Z.M. Zhang, Characterization of nanostructured thermal interface materials – a review. Int. J. Thermal Sci. 62, 2–11 (2012) A.J. McNamara, Y. Joshi, Z.M. Zhang, Characterization of nanostructured thermal interface materials – a review. Int. J. Thermal Sci. 62, 2–11 (2012)
100.
go back to reference N. Mingo, D.A. Broido, Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005); N. Mingo, D.A. Broido, Length dependence of carbon nanotube thermal conductivity and the problem of long waves. Nano Lett. 5, 1221–1225 (2005) N. Mingo, D.A. Broido, Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005); N. Mingo, D.A. Broido, Length dependence of carbon nanotube thermal conductivity and the problem of long waves. Nano Lett. 5, 1221–1225 (2005)
Metadata
Title
Thermal Properties of Solids and the Size Effect
Author
Zhuomin M. Zhang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45039-7_5

Premium Partners