Skip to main content
Top

2014 | OriginalPaper | Chapter

4. Thermal Relaxations in Gabbro and Basalt

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the Earth is not perfectly elastic and responds anelastically at seismic frequencies, seismic waves dissipate in time and space. Attenuation (\({Q^{-1}}\)) potentially provides direct information on the anelastic properties of the Earth. Anomalously weak regions, with low shear velocities and high attenuation, have been observed in the asthenosphere [1, 2], in geothermal source regions (such as rift zones, subduction zones, mantle plumes and hotspots) [3] and at the core-mantle boundary [4]. These seismically anomalous zones of low velocity and high attenuation are often explained in terms of the presence of a small amount of melt or enhanced anelasticity due to high temperatures. Understanding the rheological properties of minerals and rocks remains important in order to interpret such seismological observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mainprice, D. (1997). Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophysics, 279(1–4), 161–179. Mainprice, D. (1997). Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophysics, 279(1–4), 161–179.
2.
go back to reference Yang, Y., Forsyth, D. W., & Weeraratne, D. S. (2007). Seismic attenuation near the east pacific rise and the origin of the low-velocity zone. Earth and Planetary Science Letters, 258(1–2), 260–268. Yang, Y., Forsyth, D. W., & Weeraratne, D. S. (2007). Seismic attenuation near the east pacific rise and the origin of the low-velocity zone. Earth and Planetary Science Letters, 258(1–2), 260–268.
3.
go back to reference Butler, R., McCreery, C. S., Frazer, L. N., & Walker, D. A. (1987). High-frequency seismic attenuation of oceanic p and s waves in the western pacific. Journal of Geophysical Research, 92(B2), 1383–1396. Butler, R., McCreery, C. S., Frazer, L. N., & Walker, D. A. (1987). High-frequency seismic attenuation of oceanic p and s waves in the western pacific. Journal of Geophysical Research, 92(B2), 1383–1396.
4.
go back to reference Revenaugh, J., & Meyer, R. (1997). Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science, 277(5326), 670–673. Revenaugh, J., & Meyer, R. (1997). Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science, 277(5326), 670–673.
5.
go back to reference Karato, S.-I., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3–4), 193–207. Karato, S.-I., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3–4), 193–207.
6.
go back to reference Faul, U. H., & Jackson, I. (2005). The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1–2), 119–134. Faul, U. H., & Jackson, I. (2005). The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1–2), 119–134.
7.
go back to reference Tan, B. H., Jackson, I., & Fitz Gerald, J. D. (2001). High-temperature viscoelasticity of fine-grained polycrystalline olivine. Physics and Chemistry of Minerals, 28(9), 641–664. Tan, B. H., Jackson, I., & Fitz Gerald, J. D. (2001). High-temperature viscoelasticity of fine-grained polycrystalline olivine. Physics and Chemistry of Minerals, 28(9), 641–664.
8.
go back to reference Kê, T.-S. (1947b). Stress relaxation across grain boundaries in metals. Physical Review, 72(1), 41–46. Kê, T.-S. (1947b). Stress relaxation across grain boundaries in metals. Physical Review, 72(1), 41–46.
9.
go back to reference Jackson, I., Fitz Gerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysical Research, 107(B12), 2360. Jackson, I., Fitz Gerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysical Research, 107(B12), 2360.
10.
go back to reference Fontaine, F. R., Ildefonse, B., & Bagdassarov, N. S. (2005). Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies. Geophysical Journal International, 163(3), 1025–1038. Fontaine, F. R., Ildefonse, B., & Bagdassarov, N. S. (2005). Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies. Geophysical Journal International, 163(3), 1025–1038.
11.
go back to reference Kampfmann, W., & Berckhemer, H. (1985). High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Physics of the Earth and Planetary Interiors, 40(3), 223–247. Kampfmann, W., & Berckhemer, H. (1985). High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Physics of the Earth and Planetary Interiors, 40(3), 223–247.
12.
go back to reference Smith, B. K., & Carpenter, F. O. (1987). Transient creep in orthosilicates. Physics of the Earth and Planetary Interiors, 49(3–4), 314–324. Smith, B. K., & Carpenter, F. O. (1987). Transient creep in orthosilicates. Physics of the Earth and Planetary Interiors, 49(3–4), 314–324.
13.
go back to reference Bagdassarov, N., & Dorfman, A. (1998). Viscoelastic behavior of partially molten granites. Tectonophysics, 290(1–2), 27–45. Bagdassarov, N., & Dorfman, A. (1998). Viscoelastic behavior of partially molten granites. Tectonophysics, 290(1–2), 27–45.
14.
go back to reference Andrade, E. N. D. C. (1910). On the viscous flow in metals, and allied phenomena. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 84(567), 1–12. Andrade, E. N. D. C. (1910). On the viscous flow in metals, and allied phenomena. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 84(567), 1–12.
15.
go back to reference Gribb, T. T., & Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the andrade model for viscoelastic rheology. Journal of Geophysical Research, 103(B11), 27267–27279. Gribb, T. T., & Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the andrade model for viscoelastic rheology. Journal of Geophysical Research, 103(B11), 27267–27279.
16.
go back to reference Jackson, I., Faul, U. H., Gerald, J. D. F., & Morris, S. J. S. (2006). Contrasting viscoelastic behavior of melt-free and melt-bearing olivine: Implications for the nature of grain-boundary sliding. Materials Science and Engineering: A, 442(1–2), 170–174. Jackson, I., Faul, U. H., Gerald, J. D. F., & Morris, S. J. S. (2006). Contrasting viscoelastic behavior of melt-free and melt-bearing olivine: Implications for the nature of grain-boundary sliding. Materials Science and Engineering: A, 442(1–2), 170–174.
17.
go back to reference Schoeck, G., Bisogni, E., & Shyne, J. (1964). The activation energy of high temperature internal friction. Acta Metallurgica, 12(12), 1466–1468. Schoeck, G., Bisogni, E., & Shyne, J. (1964). The activation energy of high temperature internal friction. Acta Metallurgica, 12(12), 1466–1468.
18.
go back to reference Raj, R. (1975). Transient behavior of diffusion-induced creep and creep rupture. Metallurgical and Materials Transactions A, 6(8), 1499–1509. Raj, R. (1975). Transient behavior of diffusion-induced creep and creep rupture. Metallurgical and Materials Transactions A, 6(8), 1499–1509.
19.
go back to reference Ashby, M. F. (1969). Boundary defects and the mechanism of particle movement through crystals. Scripta Metallurgica, 3(11), 843–848. Ashby, M. F. (1969). Boundary defects and the mechanism of particle movement through crystals. Scripta Metallurgica, 3(11), 843–848.
20.
go back to reference Wakai, F. (1994). Step model of solution-precipitation creep. Acta Metallurgica et Materialia, 42(4), 1163–1172. Wakai, F. (1994). Step model of solution-precipitation creep. Acta Metallurgica et Materialia, 42(4), 1163–1172.
21.
go back to reference Berckhemer, H., Kampfmann, W., Aulbach, E., & Schmeling, H. (1982). Shear modulus and q of forsterite and dunite near partial melting from forced-oscillation experiments. Physics of the Earth and Planetary Interiors, 29(1), 30–41. Berckhemer, H., Kampfmann, W., Aulbach, E., & Schmeling, H. (1982). Shear modulus and q of forsterite and dunite near partial melting from forced-oscillation experiments. Physics of the Earth and Planetary Interiors, 29(1), 30–41.
22.
go back to reference James, M. R., Bagdassarov, N., Müller, K., & Pinkerton, H. (2004). Viscoelastic behaviour of basaltic lavas. Journal of Volcanology and Geothermal Research, 132(2–3), 99–113. James, M. R., Bagdassarov, N., Müller, K., & Pinkerton, H. (2004). Viscoelastic behaviour of basaltic lavas. Journal of Volcanology and Geothermal Research, 132(2–3), 99–113.
23.
go back to reference Weiner, A. T., Manghnani, M. H., & Raj, R. (1987). Internal friction in tholeiitic basalts. Journal of Geophysical Research, 92(B11), 11635–11643. Weiner, A. T., Manghnani, M. H., & Raj, R. (1987). Internal friction in tholeiitic basalts. Journal of Geophysical Research, 92(B11), 11635–11643.
24.
go back to reference Woirgard, J., & Gueguen, Y. (1978). Elastic modulus and internal friction in enstatite, forsterite and peridotite at seismic frequencies and high temperatures. Physics of the Earth and Planetary Interiors, 17(2), 140–146. Woirgard, J., & Gueguen, Y. (1978). Elastic modulus and internal friction in enstatite, forsterite and peridotite at seismic frequencies and high temperatures. Physics of the Earth and Planetary Interiors, 17(2), 140–146.
25.
go back to reference Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448. Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448.
26.
go back to reference Karato, S.-I. (2012). On the origin of the asthenosphere. Earth and Planetary Science Letters, 321–322, 95–103. Karato, S.-I. (2012). On the origin of the asthenosphere. Earth and Planetary Science Letters, 321–322, 95–103.
27.
go back to reference Stocker, R. L., & Gordon, R. B. (1975). Velocity and internal friction in partial melts. Journal of Geophysical Research, 80(35), 4828–4836. Stocker, R. L., & Gordon, R. B. (1975). Velocity and internal friction in partial melts. Journal of Geophysical Research, 80(35), 4828–4836.
28.
go back to reference Scarfe, C. M. (1997). Viscosity of some basaltic glasses at one atmosphere. The Canadian Mineralogist, 15, 190–194. Scarfe, C. M. (1997). Viscosity of some basaltic glasses at one atmosphere. The Canadian Mineralogist, 15, 190–194.
29.
go back to reference Bouhifd, M. A., Richet, P., Besson, P., Roskosz, M., & Ingrin, J. (2004). Redox state, microstructure and viscosity of a partially crystallized basalt melt. Earth and Planetary Science Letters, 218(1–2), 31–44. Bouhifd, M. A., Richet, P., Besson, P., Roskosz, M., & Ingrin, J. (2004). Redox state, microstructure and viscosity of a partially crystallized basalt melt. Earth and Planetary Science Letters, 218(1–2), 31–44.
30.
go back to reference Kani, K. (1934). The measurements of the viscosity of basalt glass at high temperature, i and ii. Proceedings of the Imperial Academy (Tokyo), 10(29–32), 79–82. Kani, K. (1934). The measurements of the viscosity of basalt glass at high temperature, i and ii. Proceedings of the Imperial Academy (Tokyo), 10(29–32), 79–82.
31.
go back to reference Ryan, M. P., & Blevins, J. Y. K. (1987). The Viscosity of synthetic and natural silicate melts and glasses at high temperatures and 1 bar (10\({^5}\) Pascals) pressure and at higher pressures. 1764. U.S. Geological Survey Bulletin, 84, 85 Ryan, M. P., & Blevins, J. Y. K. (1987). The Viscosity of synthetic and natural silicate melts and glasses at high temperatures and 1 bar (10\({^5}\) Pascals) pressure and at higher pressures. 1764. U.S. Geological Survey Bulletin, 84, 85
32.
go back to reference Shaw, H. R. (1969). Rheology of basalt in the melting range. Journal of Petrology, 10(3), 510–535. Shaw, H. R. (1969). Rheology of basalt in the melting range. Journal of Petrology, 10(3), 510–535.
33.
go back to reference Ryerson, F. J., Weed, H. C., & Piwinskii, A. J. (1988). Rheology of subliquidus magmas 1. picritic compositions. Journal of Geophysical Research, 93(B4), 3421–3436. Ryerson, F. J., Weed, H. C., & Piwinskii, A. J. (1988). Rheology of subliquidus magmas 1. picritic compositions. Journal of Geophysical Research, 93(B4), 3421–3436.
34.
go back to reference Webb, S. L., & Dingwell, D. B. (1990). Non-newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt, and nephelinite. Journal of Geophysical Research, 95(B10), 15695–15701. Webb, S. L., & Dingwell, D. B. (1990). Non-newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt, and nephelinite. Journal of Geophysical Research, 95(B10), 15695–15701.
35.
go back to reference Scarfe, C. M. (1973). Viscosity of basic magmas at varying pressure. Nature Physical Science, 241, 101–102. Scarfe, C. M. (1973). Viscosity of basic magmas at varying pressure. Nature Physical Science, 241, 101–102.
36.
go back to reference Doremus, R. H. (1994). Glass science. New York: Wiley Interscience. Doremus, R. H. (1994). Glass science. New York: Wiley Interscience.
37.
go back to reference Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. New York and London: Academic Press. Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. New York and London: Academic Press.
38.
go back to reference Anderson, D. L., & Given, J. W. (1982). Absorption band q model for the earth. Journal of Geophysical Research, 87(B5), 3893–3904. Anderson, D. L., & Given, J. W. (1982). Absorption band q model for the earth. Journal of Geophysical Research, 87(B5), 3893–3904.
39.
go back to reference Kê, T.-S., & Zener, C. (1951). Structure of cold-worked metals as deduced from anelastic measurements. Acta Physica Sinica, 8(2), 131–142. Kê, T.-S., & Zener, C. (1951). Structure of cold-worked metals as deduced from anelastic measurements. Acta Physica Sinica, 8(2), 131–142.
40.
go back to reference Kê, T.-S. (1950). Internal friction of metals at very high temperatures. Journal of Applied Physics, 21(5), 414–419. Kê, T.-S. (1950). Internal friction of metals at very high temperatures. Journal of Applied Physics, 21(5), 414–419.
41.
go back to reference Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research, 89(B6), 4077–4114. Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research, 89(B6), 4077–4114.
42.
go back to reference Brantley, S. L., Evans, B., Hickman, S. H., & Crerar, D. A. (1990). Healing of microcracks in quartz: Implications for fluid flow. Geology, 18(2), 136–139. Brantley, S. L., Evans, B., Hickman, S. H., & Crerar, D. A. (1990). Healing of microcracks in quartz: Implications for fluid flow. Geology, 18(2), 136–139.
43.
go back to reference Smith, D. L., & Evans, B. (1984). Diffusional crack healing in quartz. Journal of Geophysical Research, 89(B6), 4125–4135. Smith, D. L., & Evans, B. (1984). Diffusional crack healing in quartz. Journal of Geophysical Research, 89(B6), 4125–4135.
44.
go back to reference Burkhard, D. J. M. (2001). Crystallization and oxidation of kilauea basalt glass: Processes during reheating experiments. Journal of Petrology, 42(3), 507–527. Burkhard, D. J. M. (2001). Crystallization and oxidation of kilauea basalt glass: Processes during reheating experiments. Journal of Petrology, 42(3), 507–527.
45.
go back to reference Burkhard, D. J. M. (2005). Nucleation and growth rates of pyroxene, plagioclase, and fe-ti oxides in basalt under atmospheric conditions. European Journal of Mineralogy, 17(5), 675–685. Burkhard, D. J. M. (2005). Nucleation and growth rates of pyroxene, plagioclase, and fe-ti oxides in basalt under atmospheric conditions. European Journal of Mineralogy, 17(5), 675–685.
46.
go back to reference Cooper, R. F., Fanselow, J. B., & Poker, D. B. (1996). The mechanism of oxidation of a basaltic glass: Chemical diffusion of network-modifying cations. Geochimica et Cosmochimica Acta, 60(17), 3253–3265. Cooper, R. F., Fanselow, J. B., & Poker, D. B. (1996). The mechanism of oxidation of a basaltic glass: Chemical diffusion of network-modifying cations. Geochimica et Cosmochimica Acta, 60(17), 3253–3265.
47.
go back to reference Brady, J. B. (1995). Diffusion data for silicate minerals, glasses, and liquids (Vol. 2, pp. 269–290). Washington, DC: AGU Reference Shelf. Brady, J. B. (1995). Diffusion data for silicate minerals, glasses, and liquids (Vol. 2, pp. 269–290). Washington, DC: AGU Reference Shelf.
48.
go back to reference Lesher, C. E. (2010). Self-diffusion in silicate melts: Theory, observations and applications to magmatic systems. Reviews in Mineralogy and Geochemistry, 72(1), 269–309. Lesher, C. E. (2010). Self-diffusion in silicate melts: Theory, observations and applications to magmatic systems. Reviews in Mineralogy and Geochemistry, 72(1), 269–309.
49.
go back to reference Tinker, D., & Lesher, C. E. (2001). Self diffusion of si and o in dacitic liquid at high pressures. American Mineralogist, 86(1–2), 1–13. Tinker, D., & Lesher, C. E. (2001). Self diffusion of si and o in dacitic liquid at high pressures. American Mineralogist, 86(1–2), 1–13.
50.
go back to reference Lesher, C. E., Hervig, R. L., & Tinker, D. (1996). Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. Geochimica et Cosmochimica Acta, 60(3), 405–413. Lesher, C. E., Hervig, R. L., & Tinker, D. (1996). Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. Geochimica et Cosmochimica Acta, 60(3), 405–413.
51.
go back to reference Goetze, C., & Kohlstedt, D. L. (1973). Laboratory sstudy of dislocation climb and diffusion in olivine. Journal of Geophysical Research, 78(26), 5961–5971. Goetze, C., & Kohlstedt, D. L. (1973). Laboratory sstudy of dislocation climb and diffusion in olivine. Journal of Geophysical Research, 78(26), 5961–5971.
52.
go back to reference Gribb, T. T., & Cooper, R. F. (2000). The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophysical Research Letters, 27(15), 2341–2344. Gribb, T. T., & Cooper, R. F. (2000). The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophysical Research Letters, 27(15), 2341–2344.
53.
go back to reference Wakai, F., Kondo, N., Ogawa, H., Nagano, T., & Tsurekawa, S. (1996). Ceramics superplasticity: Deformation mechanisms and microstructures. Materials Characterization, 37(5), 331–341. Wakai, F., Kondo, N., Ogawa, H., Nagano, T., & Tsurekawa, S. (1996). Ceramics superplasticity: Deformation mechanisms and microstructures. Materials Characterization, 37(5), 331–341.
54.
go back to reference Salje, E. K. H. (2008). (An)elastic softening from static grain boundaries and possible effects on seismic wave propagation. Physics and Chemistry of Minerals, 35(6), 321–330. Salje, E. K. H. (2008). (An)elastic softening from static grain boundaries and possible effects on seismic wave propagation. Physics and Chemistry of Minerals, 35(6), 321–330.
Metadata
Title
Thermal Relaxations in Gabbro and Basalt
Author
Su-Ying Chien
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-03098-2_4