Skip to main content
Top
Published in: Fire Technology 6/2020

14-02-2020

Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration

Authors: Zonghou Huang, Huang Li, Wenxin Mei, Chunpeng Zhao, Jinhua Sun, Qingsong Wang

Published in: Fire Technology | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nail penetration experiment has become one of the commonly used methods to study the short circuit in lithium-ion battery safety. A series of penetration tests using the stainless steel nail on 18,650 lithium iron phosphate (LiFePO4) batteries under different conditions are conducted in this work. The effects of the states of charge (SOC), penetration positions, penetration depths, penetration speeds and nail diameters on thermal runaway (TR) are investigated. And the accelerating rate calorimeter is applied to reveal the thermal runaway mechanism. The experimental results show that the higher the SOC of the battery, the higher the possibility and risk of TR of the battery, and there seems to be a critical penetration depth where TR occurs. The battery exhibits higher average temperature at higher penetration speeds. Whether the battery get into TR is not related to the penetration speed. When the penetration location near the positive pole and negative pole,the risk of thermal runaway is much higher than the centre position of the battery. The larger the diameter of the nail, the lower the overall temperature of the battery. What’s more, the results of the penetration tests under the condition of parameter coupling shows that the average temperature of battery are greatly affected by the parameters of SOC, penetration position. The temperature of the LiFePO4 battery is within 200°C when the TR occurs induced by the penetration, which is mainly due to the incomplete exothermic reaction inside the battery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu J, Wierzbicki T, Li W (2018) A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 378:153–168CrossRef Zhu J, Wierzbicki T, Li W (2018) A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 378:153–168CrossRef
2.
go back to reference An ZJ, Jia L, Ding Y, Dang C, Li XJ (2017) A review on lithium-ion power battery thermal management technologies and thermal safety J Therm Sci 26:391–412CrossRef An ZJ, Jia L, Ding Y, Dang C, Li XJ (2017) A review on lithium-ion power battery thermal management technologies and thermal safety J Therm Sci 26:391–412CrossRef
3.
go back to reference Lu LG, Han XB, Li JQ, Hua JF, Ouyang MG (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef Lu LG, Han XB, Li JQ, Hua JF, Ouyang MG (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef
4.
go back to reference Tsujikawa T, Yabuta K, Arakawa M, Hayashi K (2013) Safety of large-capacity lithium-ion battery and evaluation of battery system for telecommunications. J Power Sources 244:11–16CrossRef Tsujikawa T, Yabuta K, Arakawa M, Hayashi K (2013) Safety of large-capacity lithium-ion battery and evaluation of battery system for telecommunications. J Power Sources 244:11–16CrossRef
5.
go back to reference Abada S, Petit M, Lecocq A, Marlair G, Sauvant-Moynot V, Huet F (2018) Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries. J Power Sources 399:264–273CrossRef Abada S, Petit M, Lecocq A, Marlair G, Sauvant-Moynot V, Huet F (2018) Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries. J Power Sources 399:264–273CrossRef
6.
go back to reference Ouyang D, Chen M, Liu J, Wei R, Weng J, Wang J (2018) Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv 8:33414–33424CrossRef Ouyang D, Chen M, Liu J, Wei R, Weng J, Wang J (2018) Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv 8:33414–33424CrossRef
7.
go back to reference Fernandes Y, Bry A, de Persis S (2018) Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J Power Sources 389:106–119CrossRef Fernandes Y, Bry A, de Persis S (2018) Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J Power Sources 389:106–119CrossRef
8.
go back to reference Ping P, Wang QS, Huang PF, Sun JH, Chen CH (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energy 129:261–273CrossRef Ping P, Wang QS, Huang PF, Sun JH, Chen CH (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energy 129:261–273CrossRef
9.
go back to reference Zhong GB, Li H, Wang C, Xu KQ, Wang QS (2018) Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules. J Electrochem Soc 165:A1925–A1934CrossRef Zhong GB, Li H, Wang C, Xu KQ, Wang QS (2018) Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules. J Electrochem Soc 165:A1925–A1934CrossRef
10.
go back to reference Lopez CF, Jeevarajan JA, Mukherjee PP (2015) Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc162:A1905–A1915CrossRef Lopez CF, Jeevarajan JA, Mukherjee PP (2015) Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc162:A1905–A1915CrossRef
11.
go back to reference Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, Sun J (2016) Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy 183:659–673CrossRef Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, Sun J (2016) Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy 183:659–673CrossRef
12.
go back to reference Mao B, Chen H, Cui Z, Wu T, Wang Q (2018) Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transf 122:1103–1115CrossRef Mao B, Chen H, Cui Z, Wu T, Wang Q (2018) Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transf 122:1103–1115CrossRef
13.
go back to reference Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273CrossRef Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273CrossRef
14.
go back to reference Lamb J, Orendorff CJ, Steele LAM, Spangler SW (2015) Failure propagation in multi-cell lithium ion batteries. J Power Sources 283:517–523CrossRef Lamb J, Orendorff CJ, Steele LAM, Spangler SW (2015) Failure propagation in multi-cell lithium ion batteries. J Power Sources 283:517–523CrossRef
15.
go back to reference Bugryniec PJ, Davidson JN, Cumming DJ, Brown SF (2019) Pursuing safer batteries: Thermal abuse of LiFePO4 cells. J Power Sources 414:557–568CrossRef Bugryniec PJ, Davidson JN, Cumming DJ, Brown SF (2019) Pursuing safer batteries: Thermal abuse of LiFePO4 cells. J Power Sources 414:557–568CrossRef
16.
go back to reference Liu B, Yin S, Xu J (2016) Integrated computation model of lithium-ion battery subject to nail penetration. Appl Energy 183:278–289CrossRef Liu B, Yin S, Xu J (2016) Integrated computation model of lithium-ion battery subject to nail penetration. Appl Energy 183:278–289CrossRef
17.
go back to reference Kim CS, Yoo JS, Jeong KM, Kim K, Yi CW (2015) Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration. Journal of Power Sources 289:41–49CrossRef Kim CS, Yoo JS, Jeong KM, Kim K, Yi CW (2015) Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration. Journal of Power Sources 289:41–49CrossRef
18.
go back to reference Zhao W, Luo G, Wang CY (2015) Modeling nail penetration process in large-format li-ion cells. J Electrochem Soc 162:A207–A217CrossRef Zhao W, Luo G, Wang CY (2015) Modeling nail penetration process in large-format li-ion cells. J Electrochem Soc 162:A207–A217CrossRef
19.
go back to reference Zhao W, Luo G, Wang C-Y (2015) Modeling Internal shorting process in large-format li-ion cells J Electrochem Soc 162:A1352–A1364CrossRef Zhao W, Luo G, Wang C-Y (2015) Modeling Internal shorting process in large-format li-ion cells J Electrochem Soc 162:A1352–A1364CrossRef
20.
go back to reference Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, Chen CH (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, Chen CH (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
21.
go back to reference Santhanagopalan S, Ramadass P, Zhang J (2009) Analysis of internal short-circuit in a lithium ion cell. J Power Sources 194:550–557CrossRef Santhanagopalan S, Ramadass P, Zhang J (2009) Analysis of internal short-circuit in a lithium ion cell. J Power Sources 194:550–557CrossRef
22.
go back to reference Chiu KC, Lin CH, Yeh SF, Lin YH, Chen KC (2014) An electrochemical modeling of lithium-ion battery nail penetration. J Power Sources 251:254–263CrossRef Chiu KC, Lin CH, Yeh SF, Lin YH, Chen KC (2014) An electrochemical modeling of lithium-ion battery nail penetration. J Power Sources 251:254–263CrossRef
23.
go back to reference Wu MS, Chiang PCJ, Lin JC, Jan YS (2004) Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests: short-circuit tests. Electrochim Acta 49:1803–1812CrossRef Wu MS, Chiang PCJ, Lin JC, Jan YS (2004) Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests: short-circuit tests. Electrochim Acta 49:1803–1812CrossRef
24.
go back to reference Roth EP, Doughty DH (2004) Thermal abuse performance of high-power 18650 Li-ion cells. J Power Sources 128:308–318CrossRef Roth EP, Doughty DH (2004) Thermal abuse performance of high-power 18650 Li-ion cells. J Power Sources 128:308–318CrossRef
25.
go back to reference Dubaniewicz TH Jr, DuCarme JP (2014) Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air. J Loss Prev Process Ind 32:165–173CrossRef Dubaniewicz TH Jr, DuCarme JP (2014) Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air. J Loss Prev Process Ind 32:165–173CrossRef
26.
go back to reference Liu BH, Zhao H, Yu HL, Li J, Xu J (2017) Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading. Electrochim Acta 256:172–184CrossRef Liu BH, Zhao H, Yu HL, Li J, Xu J (2017) Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading. Electrochim Acta 256:172–184CrossRef
27.
go back to reference Liu BH, Jia YK, Li J, Yin S, Yuan CH, Hu ZH, Wang LB, Li YX, Xu J (2018) Safety issues caused by internal short circuits in lithium-ion batteries. J Mater Chem A 6:21475–21484CrossRef Liu BH, Jia YK, Li J, Yin S, Yuan CH, Hu ZH, Wang LB, Li YX, Xu J (2018) Safety issues caused by internal short circuits in lithium-ion batteries. J Mater Chem A 6:21475–21484CrossRef
28.
go back to reference Maleki H, Howard JN (2009) Internal short circuit in Li-ion cells J Power Sources 191:568–574CrossRef Maleki H, Howard JN (2009) Internal short circuit in Li-ion cells J Power Sources 191:568–574CrossRef
29.
go back to reference Wang SR, Lu LL, Liu XJ (2013) A simulation on safety of LiFePO4/C cell using electrochemical-thermal coupling model. J Power Sources 244:101–108CrossRef Wang SR, Lu LL, Liu XJ (2013) A simulation on safety of LiFePO4/C cell using electrochemical-thermal coupling model. J Power Sources 244:101–108CrossRef
30.
go back to reference Perea A, Paolella A, Dube J, Champagne D, Mauger A, Zaghib K (2018) State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells. J Power Sources 399:392–397CrossRef Perea A, Paolella A, Dube J, Champagne D, Mauger A, Zaghib K (2018) State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells. J Power Sources 399:392–397CrossRef
31.
go back to reference Zavalis TG, Behm M, Lindbergh G (2012) Investigation of short-circuit scenarios in a lithium-ion battery cell. J Electrochem Soc 159:A848–A859CrossRef Zavalis TG, Behm M, Lindbergh G (2012) Investigation of short-circuit scenarios in a lithium-ion battery cell. J Electrochem Soc 159:A848–A859CrossRef
32.
go back to reference Feng XN, Lu LG, Ouyang MG, Li JQ, He XM (2016) A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy 115:194–208CrossRef Feng XN, Lu LG, Ouyang MG, Li JQ, He XM (2016) A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy 115:194–208CrossRef
33.
go back to reference Kim GH, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170:476–489CrossRef Kim GH, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170:476–489CrossRef
34.
go back to reference Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100CrossRef Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100CrossRef
35.
go back to reference Bryden TS, Dimitrov B, Hilton G, de Leon CP, Bugryniec P, Brown S, Cumming D, Cruden A (2018) Methodology to determine the heat capacity of lithium-ion cells. J Power Sources 395:369–378CrossRef Bryden TS, Dimitrov B, Hilton G, de Leon CP, Bugryniec P, Brown S, Cumming D, Cruden A (2018) Methodology to determine the heat capacity of lithium-ion cells. J Power Sources 395:369–378CrossRef
36.
go back to reference Wang QS, Sun JH, Yao XL, Chen CH (2005) Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries. Thermochimica Acta 437:12–16CrossRef Wang QS, Sun JH, Yao XL, Chen CH (2005) Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries. Thermochimica Acta 437:12–16CrossRef
37.
go back to reference Kawamura T, Kimura A, Egashira M, Okada S, Yamaki JI (2002) Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J Power Sources 104:260–264CrossRef Kawamura T, Kimura A, Egashira M, Okada S, Yamaki JI (2002) Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J Power Sources 104:260–264CrossRef
Metadata
Title
Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration
Authors
Zonghou Huang
Huang Li
Wenxin Mei
Chunpeng Zhao
Jinhua Sun
Qingsong Wang
Publication date
14-02-2020
Publisher
Springer US
Published in
Fire Technology / Issue 6/2020
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-00967-1

Other articles of this Issue 6/2020

Fire Technology 6/2020 Go to the issue