Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Thermal Stability of High-Energy Ball Milled Al Alloys

Authors : Rajeev Kumar Gupta, B. S. Murty, Nick Birbilis

Published in: An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-energy ball milling (HEBM) is a non-equilibrium processing techniques that imparts extended solid solubilities of alloying elements and grain refinement to the nanoscale level, this results in a thermodynamically metastable system. Such a metastable system can be prone to grain growth and decomposition of the solid solution, with elevated temperature exposure, or in the timed dependent the pursuit of thermodynamically stable phases [1, 2]. Therefore, an understanding the thermal stability of ball milled Al alloy and developing technologies to prevent grain growth and retain the alloying elements in solid solution upon high temperature exposure are of great interest—as any in-service applications require predictability of properties for the duration of a component lifetime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ma E (2005) Alloys created between immiscible elements. Prog Mater Sci 50:413–509CrossRef Ma E (2005) Alloys created between immiscible elements. Prog Mater Sci 50:413–509CrossRef
2.
go back to reference Morris MA, Morris DG (1991) Nanocrystalline twinned structures of the intermetallic Al3Fe produced by ball milling and hot deformation. Mater Sci Eng A 136:59–70CrossRef Morris MA, Morris DG (1991) Nanocrystalline twinned structures of the intermetallic Al3Fe produced by ball milling and hot deformation. Mater Sci Eng A 136:59–70CrossRef
3.
go back to reference Mondolfo LF (1976) Aluminium alloys: structure and properties. Butterworths, London Mondolfo LF (1976) Aluminium alloys: structure and properties. Butterworths, London
4.
go back to reference Van Horn KR (1967) Aluminium, Volume 1 – Properties, physical metallurgy and phase diagrams. ASM International, Materials Park, OH Van Horn KR (1967) Aluminium, Volume 1 – Properties, physical metallurgy and phase diagrams. ASM International, Materials Park, OH
6.
go back to reference Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538CrossRef Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538CrossRef
7.
go back to reference Mukhopadhyay DK, Suryanarayana C, Froes FH (1995) Structural evolution in mechanically alloyed Al-Fe powders. Metall Mater Trans A 26:1939–1946CrossRef Mukhopadhyay DK, Suryanarayana C, Froes FH (1995) Structural evolution in mechanically alloyed Al-Fe powders. Metall Mater Trans A 26:1939–1946CrossRef
8.
go back to reference Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256CrossRef Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256CrossRef
9.
go back to reference Milligan J, Vintila R, Brochu M (2009) Nanocrystalline eutectic Al-Si alloy produced by cryomilling. Mater Sci Eng A 508:43–49CrossRef Milligan J, Vintila R, Brochu M (2009) Nanocrystalline eutectic Al-Si alloy produced by cryomilling. Mater Sci Eng A 508:43–49CrossRef
10.
go back to reference Calka A, Kaczmarek W, Williams JS (1993) Extended solid solubility in ball-milled Al-Mg alloys. J Mater Sci 28:15–18CrossRef Calka A, Kaczmarek W, Williams JS (1993) Extended solid solubility in ball-milled Al-Mg alloys. J Mater Sci 28:15–18CrossRef
11.
go back to reference Zhang DL, Massalski TB, Paruchuri MR (1994) Formation of metastable and equilibrium phases during mechanical alloying of Al and Mg powders. Metall Mater Trans A Phys Metall Mater Sci 25A:73–79CrossRef Zhang DL, Massalski TB, Paruchuri MR (1994) Formation of metastable and equilibrium phases during mechanical alloying of Al and Mg powders. Metall Mater Trans A Phys Metall Mater Sci 25A:73–79CrossRef
12.
go back to reference Shaikh MA, Iqbal M, Akhter JI, Ahmad M, Zaman Q, Akhtar M, Moughal MJ, Ahmed Z, Farooque M (2003) Alloying of immiscible Ge with Al by ball milling. Mater Lett 57:3681–3685CrossRef Shaikh MA, Iqbal M, Akhter JI, Ahmad M, Zaman Q, Akhtar M, Moughal MJ, Ahmed Z, Farooque M (2003) Alloying of immiscible Ge with Al by ball milling. Mater Lett 57:3681–3685CrossRef
13.
go back to reference Kobayashi KF, Tachibana N, Shingu PH (1990) Amorphous Al-Cr alloys by mechanical grinding of rapidly solidified crystalline powders. J Mater Sci 25:801–804CrossRef Kobayashi KF, Tachibana N, Shingu PH (1990) Amorphous Al-Cr alloys by mechanical grinding of rapidly solidified crystalline powders. J Mater Sci 25:801–804CrossRef
14.
go back to reference Gupta RK, Fabijanic D, Dorin T, Qiu Y, Wang JT, Birbilis N (2015) Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Mater Des 84:270–276CrossRef Gupta RK, Fabijanic D, Dorin T, Qiu Y, Wang JT, Birbilis N (2015) Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Mater Des 84:270–276CrossRef
15.
go back to reference Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643–650CrossRef Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643–650CrossRef
16.
go back to reference Rajulapati KV, Scattergood RO, Murty KL, Duscher G, Koch CC (2006) Effect of Pb on the mechanical properties of nanocrystalline Al. Scr Mater 55:155–158CrossRef Rajulapati KV, Scattergood RO, Murty KL, Duscher G, Koch CC (2006) Effect of Pb on the mechanical properties of nanocrystalline Al. Scr Mater 55:155–158CrossRef
17.
go back to reference Rajulapati KV, Scattergood RO, Murty KL, Horita Z, Langdon TG, Koch CC (2008) Mechanical properties of bulk nanocrystalline aluminum-tungsten alloys. Metall Mater Trans A Phys Metall Mater Sci 39:2528–2534CrossRef Rajulapati KV, Scattergood RO, Murty KL, Horita Z, Langdon TG, Koch CC (2008) Mechanical properties of bulk nanocrystalline aluminum-tungsten alloys. Metall Mater Trans A Phys Metall Mater Sci 39:2528–2534CrossRef
18.
go back to reference Cardellini F, Contini V, Mazzone G, Montone A (1997) Nanocrystalline Al-Fe alloys synthesized by high-energy ball milling. Philos Mag B Phys Condens Matter Stat Mech Elect Opt Magn Prop 76:629–638 Cardellini F, Contini V, Mazzone G, Montone A (1997) Nanocrystalline Al-Fe alloys synthesized by high-energy ball milling. Philos Mag B Phys Condens Matter Stat Mech Elect Opt Magn Prop 76:629–638
19.
go back to reference Shaw L, Luo H, Villegas J, Miracle D (2004) Effects of internal strains on hardness of nanocrystalline Al-Fe-Cr-Ti alloys. Scr Mater 51:449–453CrossRef Shaw L, Luo H, Villegas J, Miracle D (2004) Effects of internal strains on hardness of nanocrystalline Al-Fe-Cr-Ti alloys. Scr Mater 51:449–453CrossRef
20.
go back to reference Wurschum R, Reimann K, Grub S, Kubler A, Scharwaechter P, Frank W, Kruse O, Carstanjen HD, Schaefer H.-E. (1997) Structure and diffusional properties of nanocrystalline Pd. Phil Mag B 76:407 Wurschum R, Reimann K, Grub S, Kubler A, Scharwaechter P, Frank W, Kruse O, Carstanjen HD, Schaefer H.-E. (1997) Structure and diffusional properties of nanocrystalline Pd. Phil Mag B 76:407
21.
go back to reference Natter H, Löffler MS, Krill CE, Hempelmann R (2001) Crystallite growth of nanocrystalline transition metals studied in situ by high temperature synchrotron X-ray diffraction. Scr Mater 44:2321–2325CrossRef Natter H, Löffler MS, Krill CE, Hempelmann R (2001) Crystallite growth of nanocrystalline transition metals studied in situ by high temperature synchrotron X-ray diffraction. Scr Mater 44:2321–2325CrossRef
22.
go back to reference Song X, Zhang J, Li L, Yang K, Liu G (2006) Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals. Acta Mater 54:5541–5550CrossRef Song X, Zhang J, Li L, Yang K, Liu G (2006) Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals. Acta Mater 54:5541–5550CrossRef
23.
go back to reference Weertman JR (2012) Retaining the nano in nanocrystalline alloys. Science 337:921–922CrossRef Weertman JR (2012) Retaining the nano in nanocrystalline alloys. Science 337:921–922CrossRef
24.
go back to reference Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Grain growth of nanocrystalline cryomilled Fe-Al powders. Metall Mater Trans A Phys Metall Mater Sci 29:2469–2475CrossRef Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Grain growth of nanocrystalline cryomilled Fe-Al powders. Metall Mater Trans A Phys Metall Mater Sci 29:2469–2475CrossRef
25.
go back to reference Zhou F, Lee J, Lavernia EJ (2001) Grain growth kinetics of a mechanically milled nanocrystalline Al. Scr Mater 44:2013–2017CrossRef Zhou F, Lee J, Lavernia EJ (2001) Grain growth kinetics of a mechanically milled nanocrystalline Al. Scr Mater 44:2013–2017CrossRef
26.
go back to reference Zhou F, Lee J, Dallek S, Lavernia EJ (2001) High grain size stability of nanocrystalline Al prepared by mechanical attrition. J Mater Res 16:3451–3458CrossRef Zhou F, Lee J, Dallek S, Lavernia EJ (2001) High grain size stability of nanocrystalline Al prepared by mechanical attrition. J Mater Res 16:3451–3458CrossRef
27.
go back to reference Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater 51:2777–2791CrossRef Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater 51:2777–2791CrossRef
28.
go back to reference Guoxian L, Zhichao L, Erde W (1995) Grain growth behaviour of mechanically alloyed Al-10Ti nanocrystalline alloy during consolidation process. J Mater Sci Lett 14:533–535CrossRef Guoxian L, Zhichao L, Erde W (1995) Grain growth behaviour of mechanically alloyed Al-10Ti nanocrystalline alloy during consolidation process. J Mater Sci Lett 14:533–535CrossRef
29.
go back to reference Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical alloying and vacuum hot pressing. Metall Mater Trans A Phys Metall Mater Sci 40:2798–2801CrossRef Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical alloying and vacuum hot pressing. Metall Mater Trans A Phys Metall Mater Sci 40:2798–2801CrossRef
30.
go back to reference Shanmugasundaram T, Heilmaier M, Sarma SV, Murty BS (2011) Thermal stability of vacuum hot pressed bulk nanostructured Al-Cu alloys. Mater Sci Forum 690:234–237CrossRef Shanmugasundaram T, Heilmaier M, Sarma SV, Murty BS (2011) Thermal stability of vacuum hot pressed bulk nanostructured Al-Cu alloys. Mater Sci Forum 690:234–237CrossRef
31.
go back to reference Suryanarayana C, Koch CC (2000) Nanocrystalline materials – current research and future directions. Hyperfine Interact 130:5–44CrossRef Suryanarayana C, Koch CC (2000) Nanocrystalline materials – current research and future directions. Hyperfine Interact 130:5–44CrossRef
32.
go back to reference Molinari A, Lonardelli I, Demetrio K, Menapace C (2010) Effect of the particle size on the thermal stability of nanostructured aluminum powder: dislocation density and second-phase particles controlling the grain growth. J Mater Sci 45:6739–6746CrossRef Molinari A, Lonardelli I, Demetrio K, Menapace C (2010) Effect of the particle size on the thermal stability of nanostructured aluminum powder: dislocation density and second-phase particles controlling the grain growth. J Mater Sci 45:6739–6746CrossRef
33.
go back to reference Murty BS, Datta MK, Pabi SK (2003) Structure and thermal stability of nanocrystalline materials. Sadhana Acad Proceed Eng Sci 28:23–45 Murty BS, Datta MK, Pabi SK (2003) Structure and thermal stability of nanocrystalline materials. Sadhana Acad Proceed Eng Sci 28:23–45
34.
go back to reference Gupta R, Singh Raman RK, Koch CC (2008) Grain growth behaviour and consolidation of ball-milled nanocrystalline Fe-10Cr alloy. Mater Sci Eng A 494:253–256CrossRef Gupta R, Singh Raman RK, Koch CC (2008) Grain growth behaviour and consolidation of ball-milled nanocrystalline Fe-10Cr alloy. Mater Sci Eng A 494:253–256CrossRef
35.
go back to reference Darling KA, Van Leeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRef Darling KA, Van Leeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRef
36.
go back to reference Rong Y (2005) Phase transformations and phase stability in nanocrystalline materials. Curr Opin Solid State Mater Sci 9:287–295CrossRef Rong Y (2005) Phase transformations and phase stability in nanocrystalline materials. Curr Opin Solid State Mater Sci 9:287–295CrossRef
37.
go back to reference Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Grain-size stabilization in nanocrystalline FeZr alloys. Scr Mater 59:530–533CrossRef Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Grain-size stabilization in nanocrystalline FeZr alloys. Scr Mater 59:530–533CrossRef
38.
go back to reference Murty BS, Venugopal T (2009). In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, CA Murty BS, Venugopal T (2009). In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, CA
39.
go back to reference Chookajorn T, Murdoch HA, Schuh CA (2012) Design of Stable nanocrystalline alloys. Science 337:951–954CrossRef Chookajorn T, Murdoch HA, Schuh CA (2012) Design of Stable nanocrystalline alloys. Science 337:951–954CrossRef
40.
go back to reference Holm EA, Foiles SM (2010) How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science 328:1138–1141CrossRef Holm EA, Foiles SM (2010) How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science 328:1138–1141CrossRef
Metadata
Title
Thermal Stability of High-Energy Ball Milled Al Alloys
Authors
Rajeev Kumar Gupta
B. S. Murty
Nick Birbilis
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57031-0_5

Premium Partners