Skip to main content
Top

2024 | OriginalPaper | Chapter

Thermal Vulnerability Analysis in Low-Income Housing with Natural Ventilation in the Galápagos Islands: Measured and Simulated Data

Authors : Santiago Navarro, Catalina Vallejo Coral, Marco Orozco Salcedo, Hugo Zúñiga Puebla, Juana Perlaza

Published in: Towards Low and Positive Energy Buildings

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Galapagos Islands are the world’s second-largest marine reserve, declared a World Heritage Site in 1978 by UNESCO, and are located in a hot and humid climate zone. Their fragile ecosystem is susceptible to the adverse effects of global warming. The increase in ambient temperature can lead to a rise in the energy requirement to achieve thermal comfort in the residential sector, mainly made up of naturally ventilated dwellings. Several studies have been developed for Ecuador regarding the impact of passive strategies in naturally ventilated dwellings on the continent, but no studies have been conducted in the Archipelago. In this sense, the present study aims to evaluate the vulnerability of a naturally ventilated house in the Galapagos, using adaptive models based on temperature and thermal stress index based on temperature and humidity. The results showed adequate levels of thermal comfort, according to UNE-EN 16,798–1:2020. However, the heat index revealed that for approximately 40% of the time the dwelling was occupied, the occupants were highly vulnerable (32 °C < HI < 52°), increasing the likelihood of heat cramps, heat exhaustion, and heat stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
  1. Pérez De Ciriza PA (2018) Evaluación del Bienestar Térmico en Locales de Trabajo Cerrados Mediante los Índices Térmicos PMV y PPD
  2. Tavakoli E, O’Donovan A, Kolokotroni M, O’Sullivan PD (2022) Evaluating the indoor thermal resilience of ventilative cooling in non-residential low energy buildings: a review. Build Environ 222:109376. https://​doi.​org/​10.​1016/​j.​buildenv.​2022.​109376View Article
  3. Zune M, Rodrigues L, Gillott M (2020) The vulnerability of homes to overheating in Myanmar today and in the future: a heat index analysis of measured and simulated data. Energy Build 223:110201. https://​doi.​org/​10.​1016/​j.​enbuild.​2020.​110201View Article
  4. Gamero-Salinas JC, Monge-Barrio A, Sánchez-Ostiz A (2020) Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate. Build Environ. https://​doi.​org/​10.​1016/​j.​buildenv.​2020.​106664View Article
  5. Chartered Institution of Building Services Engineers (CIBSE) (2013) The limits of thermal comfort: avoiding overheating in European buildings. CIBSE Technical Memorandum 52 (TM52:2013). Great Britain
  6. Asociación Española de Normalización (2020) UNE-EN 16798–1: Eficiencia energética de los edificios -Ventilación de los edificios—Parte 1:Parámetros del ambiente interior a considerar para el diseño y la evaluación de la eficiencia energética de edificios incluyendo la calidad del aire interior, co. Madrid
  7. ASHRAE (2017) ANSI/ASHRAE 55: Thermal enviromental conditions for human occupancy
  8. Delgado-Gutierrez E, Canivell J, Bienvenido-Huertas D, Hidalgo-Sánchez FM (2024) Adaptive comfort potential in different climate zones of Ecuador considering global warming. Energies 17:1–20. https://​doi.​org/​10.​3390/​en17092017View Article
  9. Delgado-Gutierrez E, Canivell J, Bienvenido-Huertas D, Rubio-Bellido C (2022) Improvement options of a social housing prototype in different climate zones in Ecuador. Buildings 12(7):989View Article
  10. Vallejo-Coral EC, Vásquez-Aza F, Godoy-Vaca L et al (2023) Assessment of the thermal behavior in social housing in hot humid climate in Ecuador BT—trends in artificial intelligence and computer engineering. In: Gómez OS, Rosero Miranda R et al (eds) Botto-Tobar M. Springer Nature Switzerland, Cham, pp 442–454
  11. Ministerio de Desarrollo Urbano y Vivienda (MIDUVI) (2018) Eficiencia energética en edificaciones residenciales (NEC-HS-EE)
  12. Fundación Bariloche (2018) Consultancy for the survey and development of sustainable building performance standards for the Galápagos archipelago-RG-72384
  13. Colmenero Fonseca F, Rodríguez Pérez R, Perlaza Rodríguez J, Palomino Bernal JF, Cárcel-Carrasco J (2024) Sustainable built environments: building information modeling, biomaterials, and regenerative practices in Mexico. Buildings 14(1):202View Article
  14. Vellei M, Herrera M, Fosas D, Natarajan S (2017) The influence of relative humidity on adaptive thermal comfort. Build Environ 124:171–185View Article
  15. Internacional Organization for Standardization (2007) ISO 10456:2007:Building materials and products—Hygrothermal properties—Tabulated design values and procedures for determining declared and design thermal values
  16. Ministerio de Desarrollo Urbano y Vivienda (MIDUVI) (2018) NEC Norma Ecuatoriana de la Construcción. Miduvi pp 1–48
  17. Gallardo A, Palme M, Beltrán RD et al. (2016) Analysis and optimization of the thermal performance of social housing construction materials in Ecuador. In: 32nd International conference on passive and low energy architecture cities, Buildings, People: Toregenerative Environments
  18. Godoy-Vaca L, Vallejo-Coral EC, Martínez-Gómez J et al (2021) Predicted medium vote thermal comfort analysis applying energy simulations with phase change materials for very hot-humid climates in social housing in ecuador. Sustain Switz 13:1–31. https://​doi.​org/​10.​3390/​su13031257View Article
  19. Instituto Nacional de Estadística y Censos—INEC (2015) Censo de Población y Vivienda Galápagos. 22
  20. Steinitz-Kannan M, Lo C, Mari J (2020) History of limnology in Ecuador: a foundation for a growing field in the country. Hydrobiologia. https://​doi.​org/​10.​1007/​s10750-020-04291-1View Article
  21. Fundación Charles Darwin (2023) Datazone. In: Base de datos climatológicos
  22. NASA Prediction of Worldwide Energy Resource Project
  23. Gomes R, Ferreira A, Azevedo L et al (2021) Retrofit measures evaluation considering thermal comfort using building energy simulation: two Lisbon households. Adv Build Energy Res 15:291–314. https://​doi.​org/​10.​1080/​17512549.​2018.​1520646View Article
  24. Charles Darwin Foundation Galapagos (2023) Base de datos climatológicos. In: Puerto Ayora
  25. ASHRAE Guideline 14–2014 (2014) Measurement of energy, Demand, and water savings. Atlanta, GA, USA
  26. Baba FM, Ge H, Zmeureanu R, Wang LL (2022) Calibration of building model based on indoor temperature for overheating assessment using genetic algorithm: methodology, evaluation criteria, and case study. Build Environ. https://​doi.​org/​10.​1016/​j.​buildenv.​2021.​108518View Article
  27. Sun K, Specian M, Hong T (2020) Nexus of thermal resilience and energy efficiency in buildings : a case study of a nursing home. Build Environ 177:106842. https://​doi.​org/​10.​1016/​j.​buildenv.​2020.​106842View Article
  28. Litardo J, Macias-zambrano JA (2019) Measuring the effect of local commercial roofing samples on the thermal behavior of a social interest dwelling located in different climates in Ecuador IMECE2019–11472 measuring the effect of local commercial roofing samples on the. https://​doi.​org/​10.​1115/​IMECE2019-11472
  29. Vallejo EC, Vásquez-Aza F, Godoy-Vaca L et al. (2022) Assessment of the thermal behavior in social housing in hot humid climate in Ecuador. In: Trends in artificial intelligence and computer engineering. pp 442–454
  30. Bhikhoo N, Hashemi A, Cruickshank H (2017) Improving thermal comfort of low-income housing in thailand through passive design strategies. Sustainability 9:1–23. https://​doi.​org/​10.​3390/​su9081440View Article
  31. García Y, Cuadrado J, Blanco JM, Roji E (2018) Optimizing the indoor thermal behaviour of housing units in hot humid climates: Analysis and modelling of sustainable constructive alternatives. Indoor Built Environ 28:772–789. https://​doi.​org/​10.​1177/​1420326X18793965​View Article
  32. Yuliani S, Hardiman G, Setyowati E, Setyaningsih W, Winarto Y (2021) Thermal behaviour of concrete and corrugated zinc green roofs on low-rise housing in the humid tropics. Architect Sci Rev 64(3):247–261. https://​doi.​org/​10.​1080/​00038628.​2020.​1751054View Article
  33. Vallejo-Coral EC, Vásquez-Aza F, Godoy-Vaca L et al (2023) Assessment of the thermal behavior in social housing in hot humid climate in Ecuador. Lect Notes Netw Syst. https://​doi.​org/​10.​1007/​978-3-031-25942-5_​35View Article
  34. Kong D, Liu H, Wu Y et al (2019) Effects of indoor humidity on building occupants thermal comfort and evidence in terms of climate adaptation. Build Environ 155:298–307. https://​doi.​org/​10.​1016/​j.​buildenv.​2019.​02.​039View Article
  35. ASHRAE (2017) ASHRAE Handbook: Fundamentals
Metadata
Title
Thermal Vulnerability Analysis in Low-Income Housing with Natural Ventilation in the Galápagos Islands: Measured and Simulated Data
Authors
Santiago Navarro
Catalina Vallejo Coral
Marco Orozco Salcedo
Hugo Zúñiga Puebla
Juana Perlaza
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-70851-0_8