Skip to main content
Top
Published in:

03-05-2023

Thermally compensated ZnO film bulk acoustic resonator for RF application above 5GHz frequency

Authors: Poorvi K. Joshi, Meghana A. Hasamnis, Rajendra M. Patrikar

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a study of the effect of introducing two-series air gap capacitor and tailoring the oxide in thin-film bulk acoustic resonator (FBARs) for thermal compensation at a frequency > 5 GHz. This approach reduces the temperature coefficient of frequency value of ZnO FBAR upto 0.011 ppm\(/^\circ\) C within the industrial temperature range at 5.45 GHz frequency. The quality factor of the compensated FBARs is 1100 with a motional impedance of 38 \(\Omega\). This exceeds significantly the quality factor of uncompensated FBARs (\(\sim\)120). Additionally, we report on the stress and strain required to obtain an optimal design of compensated FBARs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Selén, Y., Parkvall, S., Meyer, M., Osseiran, A.: Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53(1), 202–208 (2015)CrossRef Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Selén, Y., Parkvall, S., Meyer, M., Osseiran, A.: Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53(1), 202–208 (2015)CrossRef
2.
go back to reference Iannacci, J.: Rf-mems for 5g applications: a reconfigurable 8-bit power attenuator working up to 110 ghz. part 1: design concept, technology and working principles. Microsyst. Technol. 26(3), 675–687 (2020)CrossRef Iannacci, J.: Rf-mems for 5g applications: a reconfigurable 8-bit power attenuator working up to 110 ghz. part 1: design concept, technology and working principles. Microsyst. Technol. 26(3), 675–687 (2020)CrossRef
3.
go back to reference Pillai, G., Zope, A.A., Tsai, J.M.-L., Li, S.-S.: Design and optimization of shf composite fbar resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1864–1873 (2017)CrossRef Pillai, G., Zope, A.A., Tsai, J.M.-L., Li, S.-S.: Design and optimization of shf composite fbar resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(12), 1864–1873 (2017)CrossRef
4.
go back to reference Melamud, R., Chandorkar, S.A., Kim, B., Lee, H.K., Salvia, J.C., Bahl, G., Hopcroft, M.A., Kenny, T.W.: Temperature-insensitive composite micromechanical resonators. J. Microelectromechanical Syst. 18(6), 1409–1419 (2009)CrossRef Melamud, R., Chandorkar, S.A., Kim, B., Lee, H.K., Salvia, J.C., Bahl, G., Hopcroft, M.A., Kenny, T.W.: Temperature-insensitive composite micromechanical resonators. J. Microelectromechanical Syst. 18(6), 1409–1419 (2009)CrossRef
5.
go back to reference Faizan, M., Villanueva, L.G.: Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement. J. Microelectromechanical Syst. 30(3), 369–374 (2021)CrossRef Faizan, M., Villanueva, L.G.: Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement. J. Microelectromechanical Syst. 30(3), 369–374 (2021)CrossRef
6.
go back to reference Pandit, M., Mustafazade, A., Sobreviela, G., Zhao, C., Zou, X., Seshia, A.A.: Experimental observation of temperature and pressure induced frequency fluctuations in silicon mems resonators. J. Microelectromechanical Syst. 30(4), 500–505 (2021)CrossRef Pandit, M., Mustafazade, A., Sobreviela, G., Zhao, C., Zou, X., Seshia, A.A.: Experimental observation of temperature and pressure induced frequency fluctuations in silicon mems resonators. J. Microelectromechanical Syst. 30(4), 500–505 (2021)CrossRef
7.
go back to reference Han, J., Xiao, Y., Chen, W., Jia, W., Zhu, K., Wu, G.: “Jmems letters. 1pt temperature compensated bulk-mode capacitive mems resonators with \(\pm\)16 ppm temperature stability over industrial temperature range,” J. Microelectromechanical Syst. (2022) Han, J., Xiao, Y., Chen, W., Jia, W., Zhu, K., Wu, G.: “Jmems letters. 1pt temperature compensated bulk-mode capacitive mems resonators with \(\pm\)16 ppm temperature stability over industrial temperature range,” J. Microelectromechanical Syst. (2022)
8.
go back to reference Salvia, J.C., Melamud, R., Chandorkar, S.A., Lord, S.F., Kenny, T.W.: Real-time temperature compensation of mems oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromechanical Syst. 19(1), 192–201 (2009)CrossRef Salvia, J.C., Melamud, R., Chandorkar, S.A., Lord, S.F., Kenny, T.W.: Real-time temperature compensation of mems oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromechanical Syst. 19(1), 192–201 (2009)CrossRef
9.
go back to reference Wojciechowski, K.E., Olsson, R.H.: A fully integrated oven controlled microelectromechanical oscillatorpart II: characterization and measurement. J. Microelectromechanical Syst. 24(6), 1795–1802 (2015)CrossRef Wojciechowski, K.E., Olsson, R.H.: A fully integrated oven controlled microelectromechanical oscillatorpart II: characterization and measurement. J. Microelectromechanical Syst. 24(6), 1795–1802 (2015)CrossRef
10.
go back to reference You, W., Pei, B., Sun, K., Zhang, L., Yang, H., Li, X.: Oven controlled n++ [1 0 0] length-extensional mode silicon resonator with frequency stability of 1 ppm over industrial temperature range. J. Micromechanics Microengineering 27(9), 095002 (2017)CrossRef You, W., Pei, B., Sun, K., Zhang, L., Yang, H., Li, X.: Oven controlled n++ [1 0 0] length-extensional mode silicon resonator with frequency stability of 1 ppm over industrial temperature range. J. Micromechanics Microengineering 27(9), 095002 (2017)CrossRef
11.
go back to reference Xu, C., Segovia-Fernandez, J., Kim, H.J., Piazza, G.: Temperature-stable piezoelectric mems resonators using integrated ovens and simple resistive feedback circuits. J. Microelectromechanical Syst. 26(1), 187–195 (2016)CrossRef Xu, C., Segovia-Fernandez, J., Kim, H.J., Piazza, G.: Temperature-stable piezoelectric mems resonators using integrated ovens and simple resistive feedback circuits. J. Microelectromechanical Syst. 26(1), 187–195 (2016)CrossRef
12.
go back to reference Ho, G.K., Sundaresan, K., Pourkamali, S., Ayazi, F.: “Low-motional-impedance highly-tunable i/sup 2/resonators for temperature-compensated reference oscillators,” in 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005. IEEE, pp. 116–120 (2005) Ho, G.K., Sundaresan, K., Pourkamali, S., Ayazi, F.: “Low-motional-impedance highly-tunable i/sup 2/resonators for temperature-compensated reference oscillators,” in 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005. IEEE, pp. 116–120 (2005)
13.
go back to reference Sundaresan, K., Ho, G.K., Pourkamali, S., Ayazi, F.: Electronically temperature compensated silicon bulk acoustic resonator reference oscillators. IEEE J. Solid-State Circuits 42(6), 1425–1434 (2007)CrossRef Sundaresan, K., Ho, G.K., Pourkamali, S., Ayazi, F.: Electronically temperature compensated silicon bulk acoustic resonator reference oscillators. IEEE J. Solid-State Circuits 42(6), 1425–1434 (2007)CrossRef
14.
go back to reference Wu, G., Xu, J., Zhang, X., Wang, N., Yan, D., Lim, J.L.K., Zhu, Y., Li, W., Gu, Y.: Wafer-level vacuum-packaged high-performance aln-on-soi piezoelectric resonator for sub-100-mhz oscillator applications. IEEE Trans. Ind. Electron. 65(4), 3576–3584 (2017)CrossRef Wu, G., Xu, J., Zhang, X., Wang, N., Yan, D., Lim, J.L.K., Zhu, Y., Li, W., Gu, Y.: Wafer-level vacuum-packaged high-performance aln-on-soi piezoelectric resonator for sub-100-mhz oscillator applications. IEEE Trans. Ind. Electron. 65(4), 3576–3584 (2017)CrossRef
15.
go back to reference Zaliasl, S., Salvia, J.C., Hill, G.C., Chen, L., Joo, K., Palwai, R., Arumugam, N., Phadke, M., Mukherjee, S., Lee, H.-C., et al.: A 3 ppm 1.5\(\times\) 0.8 \(mm^2\) 1.0 \(\mu\)a 32.768 khz mems-based oscillator. IEEE J. Solid-State Circuits 50(1), 291–302 (2014)CrossRef Zaliasl, S., Salvia, J.C., Hill, G.C., Chen, L., Joo, K., Palwai, R., Arumugam, N., Phadke, M., Mukherjee, S., Lee, H.-C., et al.: A 3 ppm 1.5\(\times\) 0.8 \(mm^2\) 1.0 \(\mu\)a 32.768 khz mems-based oscillator. IEEE J. Solid-State Circuits 50(1), 291–302 (2014)CrossRef
16.
go back to reference Ruffieux, D., Krummenacher, F., Pezous, A., Spinola-Durante, G.: Silicon resonator based 3.2 \(\mu\) w real time clock with \(\pm\)10 ppm frequency accuracy. IEEE J. Solid-State Circuits 45(1), 224–234 (2009)CrossRef Ruffieux, D., Krummenacher, F., Pezous, A., Spinola-Durante, G.: Silicon resonator based 3.2 \(\mu\) w real time clock with \(\pm\)10 ppm frequency accuracy. IEEE J. Solid-State Circuits 45(1), 224–234 (2009)CrossRef
17.
go back to reference Wang, J., Lakin, K.: Low-temperature coefficient bulk acoustic wave composite resonators. Appl. Phys. Lett. 40(4), 308–310 (1982)CrossRef Wang, J., Lakin, K.: Low-temperature coefficient bulk acoustic wave composite resonators. Appl. Phys. Lett. 40(4), 308–310 (1982)CrossRef
18.
go back to reference Baborowski, J., Bourgeois, C., Pezous, A., Muller, C., Dubois, M.-A.: “Piezoelectrically activated silicon resonators,” in IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE 2007, 1210–1213 (2007) Baborowski, J., Bourgeois, C., Pezous, A., Muller, C., Dubois, M.-A.: “Piezoelectrically activated silicon resonators,” in IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE 2007, 1210–1213 (2007)
19.
go back to reference Melamud, R., Kim, B., Chandorkar, S.A., Hopcroft, M.A., Agarwal, M., Jha, C.M., Kenny, T.W.: Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107 (2007)CrossRef Melamud, R., Kim, B., Chandorkar, S.A., Hopcroft, M.A., Agarwal, M., Jha, C.M., Kenny, T.W.: Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107 (2007)CrossRef
20.
go back to reference Shahmohammadi, M., Harrington, B.P., Abdolvand, R.: “Zero temperature coefficient of frequency in extensional-mode highly doped silicon microresonators,” in IEEE International Frequency Control Symposium Proceedings. IEEE 2012, 1–4 (2012) Shahmohammadi, M., Harrington, B.P., Abdolvand, R.: “Zero temperature coefficient of frequency in extensional-mode highly doped silicon microresonators,” in IEEE International Frequency Control Symposium Proceedings. IEEE 2012, 1–4 (2012)
21.
go back to reference Jaakkola, A., Prunnila, M., Pensala, T., Dekker, J., Pekko, P.: Determination of doping and temperature-dependent elastic constants of degenerately doped silicon from mems resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(7), 1063–1074 (2014)CrossRef Jaakkola, A., Prunnila, M., Pensala, T., Dekker, J., Pekko, P.: Determination of doping and temperature-dependent elastic constants of degenerately doped silicon from mems resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(7), 1063–1074 (2014)CrossRef
22.
go back to reference Hsu, W.-T., Nguyen, C.-C.: “Geometric stress compensation for enhanced thermal stability in micromechanical resonators,” in IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), vol. 1. IEEE 1998, 945–948 (1998) Hsu, W.-T., Nguyen, C.-C.: “Geometric stress compensation for enhanced thermal stability in micromechanical resonators,” in IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), vol. 1. IEEE 1998, 945–948 (1998)
23.
go back to reference Hsu, W.-T., Clark, J. R., Nguyen, C.-C.: “Mechanically temperature-compensated flexural-mode micromechanical resonators,” in International Electron Devices Meeting: Technical Digest. IEDM (Cat. No. 00CH37138). IEEE 2000, 399–402 (2000) Hsu, W.-T., Clark, J. R., Nguyen, C.-C.: “Mechanically temperature-compensated flexural-mode micromechanical resonators,” in International Electron Devices Meeting: Technical Digest. IEDM (Cat. No. 00CH37138). IEEE 2000, 399–402 (2000)
24.
go back to reference Samarao, A., Casinovi, G., Ayazi, F.: “Passive tcf compensation in high q silicon micromechanical resonators,” in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, pp. 116–119 (2010) Samarao, A., Casinovi, G., Ayazi, F.: “Passive tcf compensation in high q silicon micromechanical resonators,” in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, pp. 116–119 (2010)
25.
go back to reference Pinkett, S.L., Hunt, W.D., Barber, B.P., Gammel, P.L.: Determination of zno temperature coefficients using thin film bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1491–1496 (2002)CrossRef Pinkett, S.L., Hunt, W.D., Barber, B.P., Gammel, P.L.: Determination of zno temperature coefficients using thin film bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1491–1496 (2002)CrossRef
26.
go back to reference Pang, W., Yu, H., Zhang, H., Kim, E.S.: Temperature-compensated film bulk acoustic resonator above 2 ghz. IEEE Electron Device Lett. 26(6), 369–371 (2005)CrossRef Pang, W., Yu, H., Zhang, H., Kim, E.S.: Temperature-compensated film bulk acoustic resonator above 2 ghz. IEEE Electron Device Lett. 26(6), 369–371 (2005)CrossRef
27.
go back to reference Pang, W., Ruby, R.C., Parker, R., Fisher, P.W., Unkrich, M.A., Larson, J.D.: A temperature-stable film bulk acoustic wave oscillator. IEEE Electron Device Lett. 29(4), 315–318 (2008)CrossRef Pang, W., Ruby, R.C., Parker, R., Fisher, P.W., Unkrich, M.A., Larson, J.D.: A temperature-stable film bulk acoustic wave oscillator. IEEE Electron Device Lett. 29(4), 315–318 (2008)CrossRef
28.
go back to reference Liu, Y., Sun, K., Ma, J., Yu, Z., Lan, Z.: Design and fabrication of temperature-compensated film bulk acoustic resonator filter based on the stress compensation effect. Coatings 12(8), 1126 (2022)CrossRef Liu, Y., Sun, K., Ma, J., Yu, Z., Lan, Z.: Design and fabrication of temperature-compensated film bulk acoustic resonator filter based on the stress compensation effect. Coatings 12(8), 1126 (2022)CrossRef
29.
go back to reference Hassanien, A.E., Lu, R., Gong, S.: “A near zero tcf acoustic resonator with high electromechanical coupling of 13.5% at 3.5 ghz,” in IEEE MTT-S International Microwave Symposium (IMS). IEEE 2021, 218–221 (2021) Hassanien, A.E., Lu, R., Gong, S.: “A near zero tcf acoustic resonator with high electromechanical coupling of 13.5% at 3.5 ghz,” in IEEE MTT-S International Microwave Symposium (IMS). IEEE 2021, 218–221 (2021)
30.
go back to reference Zou, Q., Lee, D., Bi, F., Ruby, R., Small, M., Ortiz, S., Oshmyansky, Y., Kaitila, J.: “High coupling coefficient temperature compensated fbar resonator for oscillator application with wide pulling range,” in IEEE International Frequency Control Symposium. IEEE 2010, 646–651 (2010) Zou, Q., Lee, D., Bi, F., Ruby, R., Small, M., Ortiz, S., Oshmyansky, Y., Kaitila, J.: “High coupling coefficient temperature compensated fbar resonator for oscillator application with wide pulling range,” in IEEE International Frequency Control Symposium. IEEE 2010, 646–651 (2010)
31.
go back to reference Vanhelmont, F., Philippe, P., Jansman, A., Milsom, R., Ruigrok, J., Oruk, A.: “4d-3 a 2 ghz reference oscillator incorporating a temperature compensated baw resonator,” in IEEE Ultrasonics Symposium. IEEE 2006, 333–336 (2006) Vanhelmont, F., Philippe, P., Jansman, A., Milsom, R., Ruigrok, J., Oruk, A.: “4d-3 a 2 ghz reference oscillator incorporating a temperature compensated baw resonator,” in IEEE Ultrasonics Symposium. IEEE 2006, 333–336 (2006)
Metadata
Title
Thermally compensated ZnO film bulk acoustic resonator for RF application above 5GHz frequency
Authors
Poorvi K. Joshi
Meghana A. Hasamnis
Rajendra M. Patrikar
Publication date
03-05-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02044-6