Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 6/2020

16-05-2020 | Research Article-Physics

Thermo-Diffusion and Diffusion-Thermo Effects on MHD Third-Grade Nanofluid Flow Driven by Peristaltic Transport

Authors: Asha S. Kotnurkar, Deepa C. Katagi

Published in: Arabian Journal for Science and Engineering | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current paper examines the thermo-diffusion and diffusion-thermo effects on MHD third-grade nanofluid driven by peristalsis. The governing equations are linearized by adopting the low Reynolds number and long wavelength approximations. The Adomian series expression for velocity, stream function, pressure, concentration and temperature are acquired. The effect of sundry variables are discussed and illustrated graphically. The results reveal that the temperature values are enhanced with increasing Dufour number and the Soret number diminishes the concentration. Further, it is found that this study can be used for fabrication of semiconductor devices, manipulation of DNA and separation of biomolecules, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Latham, T. W.: Fluid motion in a peristaltic pump. M.S. Thesis. MIT. Cambridge, MA (1966) Latham, T. W.: Fluid motion in a peristaltic pump. M.S. Thesis. MIT. Cambridge, MA (1966)
3.
go back to reference Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelength and low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)CrossRef Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelength and low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)CrossRef
4.
go back to reference El Shehawey, E.F.; Mekheimer, K.S.: Couple stresses in peristaltic transport of fluids. J. Phys. 27, 1163–1170 (1994)MathSciNetMATH El Shehawey, E.F.; Mekheimer, K.S.: Couple stresses in peristaltic transport of fluids. J. Phys. 27, 1163–1170 (1994)MathSciNetMATH
5.
go back to reference Ebaid, A.; Elshehawey, E.F.; Eldabe, N.T.; Elghazy, E.M.: Peristaltic transport in an asymmetric channel through a porous medium. Appl. Math. Comput. 182(1), 140–150 (2006)MathSciNetMATH Ebaid, A.; Elshehawey, E.F.; Eldabe, N.T.; Elghazy, E.M.: Peristaltic transport in an asymmetric channel through a porous medium. Appl. Math. Comput. 182(1), 140–150 (2006)MathSciNetMATH
6.
go back to reference Asha, S.K.; Deepa, C.K.: Influence of induced magnetic field and heat transfer on peristaltic transport of a micro polar fluid in a tapered asymmetric channel. Heat Transf. Asian Res. 48, 2714–2735 (2019)CrossRef Asha, S.K.; Deepa, C.K.: Influence of induced magnetic field and heat transfer on peristaltic transport of a micro polar fluid in a tapered asymmetric channel. Heat Transf. Asian Res. 48, 2714–2735 (2019)CrossRef
7.
go back to reference Gireesha, B.J.; Reddy Gorla, R.S.; Mahanthesh, B.: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J. Nanofluids. 4(4), 1–11 (2015)CrossRef Gireesha, B.J.; Reddy Gorla, R.S.; Mahanthesh, B.: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J. Nanofluids. 4(4), 1–11 (2015)CrossRef
8.
go back to reference Lakshmi, K.L.; Gireesha, B.J.; Mahanthesh, B.; Reddy Gorla, R.S.: Influence of nonlinear thermal radiation and magnetic field on upper-convected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles. Int. Sci. Publ. Consult. Serv. 2016, 57–73 (2016)MathSciNet Lakshmi, K.L.; Gireesha, B.J.; Mahanthesh, B.; Reddy Gorla, R.S.: Influence of nonlinear thermal radiation and magnetic field on upper-convected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles. Int. Sci. Publ. Consult. Serv. 2016, 57–73 (2016)MathSciNet
9.
go back to reference Kumar, B.; Seth, G.S.; Nandkeolyar, R.; Chamkha, A.J.: Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. Int. J. Therm. Sci. 149, 106101 (2019)CrossRef Kumar, B.; Seth, G.S.; Nandkeolyar, R.; Chamkha, A.J.: Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. Int. J. Therm. Sci. 149, 106101 (2019)CrossRef
10.
go back to reference Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.; Chamkha, A.J.: Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. Int. J. Numer. Methods Heat Fluid Flow 29(10), 3638–3658 (2019)CrossRef Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.; Chamkha, A.J.: Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. Int. J. Numer. Methods Heat Fluid Flow 29(10), 3638–3658 (2019)CrossRef
11.
go back to reference Taebi, T.; Chamkha, A.J.: Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow 30(3), 1115–1136 (2019)CrossRef Taebi, T.; Chamkha, A.J.: Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow 30(3), 1115–1136 (2019)CrossRef
12.
go back to reference Alsabery, A.I.; Armaghani, T.; Chamkha, A.J.; Hashim, I.: Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alex. Eng. J. 59(1), 129–148 (2020)CrossRef Alsabery, A.I.; Armaghani, T.; Chamkha, A.J.; Hashim, I.: Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alex. Eng. J. 59(1), 129–148 (2020)CrossRef
13.
go back to reference Dogonchi, A.S.; Tayebi, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139, 661–671 (2020)CrossRef Dogonchi, A.S.; Tayebi, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139, 661–671 (2020)CrossRef
14.
go back to reference Ghalambaz, M.; Mehryan, S.A.M.; Izadpanahi, E.; Chamkha, A.J.; Wen, D.: MHD natural convection of Cu-Al2O3 water hybrid nanofluids in a cavity equally divided into twoparts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2020)CrossRef Ghalambaz, M.; Mehryan, S.A.M.; Izadpanahi, E.; Chamkha, A.J.; Wen, D.: MHD natural convection of Cu-Al2O3 water hybrid nanofluids in a cavity equally divided into twoparts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2020)CrossRef
15.
go back to reference Ayoubloo, K.A.; Ghalambaz, M.; Armaghani, T.; Aminreza, N.; Chamkha, A.J.: Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. Int. J. Numer. Methods Heat Fluid Flow 30(3), 1096–1114 (2019)CrossRef Ayoubloo, K.A.; Ghalambaz, M.; Armaghani, T.; Aminreza, N.; Chamkha, A.J.: Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. Int. J. Numer. Methods Heat Fluid Flow 30(3), 1096–1114 (2019)CrossRef
17.
go back to reference Noreen, S.: Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field. PLoS One 8(11), e78770 (2013)CrossRef Noreen, S.: Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field. PLoS One 8(11), e78770 (2013)CrossRef
18.
go back to reference Chamkha, A.J.: MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption. Non-linear Anal. Model. Control 14(1), 27–40 (2009)MATHCrossRef Chamkha, A.J.: MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption. Non-linear Anal. Model. Control 14(1), 27–40 (2009)MATHCrossRef
19.
go back to reference Mehryan, S.A.M.; Heidarshenas, M.H.; Hajjar, A.; Ghalambaz, M.: Numerical study of melting-process of a non-Newtonian fluid inside a metal foam. Alex. Eng. J. 59(1), 191–207 (2020)CrossRef Mehryan, S.A.M.; Heidarshenas, M.H.; Hajjar, A.; Ghalambaz, M.: Numerical study of melting-process of a non-Newtonian fluid inside a metal foam. Alex. Eng. J. 59(1), 191–207 (2020)CrossRef
20.
go back to reference Choi, S.U.S.: Enhancing thermal conductivity of fluid with nanofluid: developments and applications of non-Newtonian flows. ASME J. Heat Transf. 66, 99–105 (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluid with nanofluid: developments and applications of non-Newtonian flows. ASME J. Heat Transf. 66, 99–105 (1995)
21.
go back to reference Asha, S.K.; Deepa, C.K.: Effect of inclined magnetic field and mixed convection peristaltic flow of nanofluids in an asymmetric channel by Adomian Decomposition Method. J. Appl. Sci. Comput. 5(9), 135–147 (2018) Asha, S.K.; Deepa, C.K.: Effect of inclined magnetic field and mixed convection peristaltic flow of nanofluids in an asymmetric channel by Adomian Decomposition Method. J. Appl. Sci. Comput. 5(9), 135–147 (2018)
22.
go back to reference Abbasi, F.M.; Hayat, T.; Ahmad, B.; Chen, G.Q.: Peristaltic motion of non-Newtonian nanofluid in an asymmetric channel. Z. Naturforsch. 69, 451–461 (2014)CrossRef Abbasi, F.M.; Hayat, T.; Ahmad, B.; Chen, G.Q.: Peristaltic motion of non-Newtonian nanofluid in an asymmetric channel. Z. Naturforsch. 69, 451–461 (2014)CrossRef
23.
go back to reference Gireesha, B.J.; Mahanthesh, B.; Shivakumara, I.S.; Eshwarappa, K.M.: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field. Eng. Sci. Technol. Int. J. 19(1), 313–321 (2016) Gireesha, B.J.; Mahanthesh, B.; Shivakumara, I.S.; Eshwarappa, K.M.: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field. Eng. Sci. Technol. Int. J. 19(1), 313–321 (2016)
24.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Reddy Gorla, R.S.; Abbasi, F.M.; Shehzad, S.A.: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 417, 189–196 (2016)CrossRef Mahanthesh, B.; Gireesha, B.J.; Reddy Gorla, R.S.; Abbasi, F.M.; Shehzad, S.A.: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 417, 189–196 (2016)CrossRef
25.
go back to reference Asha, S.K.; Deepa, C.K.: Mixed convection of MHD peristaltic flow of a pseudoplastic nanofluid in asymmetric channel. J. Comput. Math. Sci. 9(7), 736–747 (2018) Asha, S.K.; Deepa, C.K.: Mixed convection of MHD peristaltic flow of a pseudoplastic nanofluid in asymmetric channel. J. Comput. Math. Sci. 9(7), 736–747 (2018)
26.
go back to reference Amala, S.; Mahanthesh, B.: Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current. Nonlinear convection and heat absorption. J. Nanofluids 7(6), 1138–1148 (2018)CrossRef Amala, S.; Mahanthesh, B.: Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current. Nonlinear convection and heat absorption. J. Nanofluids 7(6), 1138–1148 (2018)CrossRef
27.
go back to reference Mohammad, G.; Chamka, A.J.; Wen, D.: Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. Int. J. Heat Mass Transf. 138, 738–749 (2019)CrossRef Mohammad, G.; Chamka, A.J.; Wen, D.: Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. Int. J. Heat Mass Transf. 138, 738–749 (2019)CrossRef
28.
go back to reference Chamkha, A.J.; Sazegar, S.; Jamesahar, E.; Ghalambaz, M.: Thermal non-equilibrium heat transfer modelling of hybrid nanofluids in a structure composed of the layers of solid and porous media and free nanofluids. Energies 12(3), 541 (2019)CrossRef Chamkha, A.J.; Sazegar, S.; Jamesahar, E.; Ghalambaz, M.: Thermal non-equilibrium heat transfer modelling of hybrid nanofluids in a structure composed of the layers of solid and porous media and free nanofluids. Energies 12(3), 541 (2019)CrossRef
29.
go back to reference Mehryan, S.A.M.; Izadpanahi, E.; Ghalambaz, M.; Chamkha, A.J.: Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J. Therm. Anal. Calorim. 137, 965–982 (2019)CrossRef Mehryan, S.A.M.; Izadpanahi, E.; Ghalambaz, M.; Chamkha, A.J.: Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J. Therm. Anal. Calorim. 137, 965–982 (2019)CrossRef
30.
go back to reference Mehryan, S.A.M.; Ghalambaz, M.; Gargari, L.S.; Hajjar, A.; Sheremet, M.: Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J. Energy Storage 28, 101236 (2020)CrossRef Mehryan, S.A.M.; Ghalambaz, M.; Gargari, L.S.; Hajjar, A.; Sheremet, M.: Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J. Energy Storage 28, 101236 (2020)CrossRef
31.
go back to reference Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A.J.: Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. 139, 2321–2336 (2020)CrossRef Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A.J.: Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. 139, 2321–2336 (2020)CrossRef
32.
go back to reference Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)MATHCrossRef Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)MATHCrossRef
33.
go back to reference Hayat, T.; Rafiq, M.; Bashir, A.: Soret and Dufour effects on MHD peristaltic flow of a Jeffrey fluid in a rotating system with porous medium. PLoS One 11(1), e0145525 (2016)CrossRef Hayat, T.; Rafiq, M.; Bashir, A.: Soret and Dufour effects on MHD peristaltic flow of a Jeffrey fluid in a rotating system with porous medium. PLoS One 11(1), e0145525 (2016)CrossRef
34.
go back to reference Bilal Ashraf, M.; Hayat, T.; Alsaedi, A.; Shehzad, S.A.: Soret and Dufour effects on the mixed convection flow of an Oldroyd-B fluid with convective boundary conditions. Res. Phys. 6, 917–924 (2016) Bilal Ashraf, M.; Hayat, T.; Alsaedi, A.; Shehzad, S.A.: Soret and Dufour effects on the mixed convection flow of an Oldroyd-B fluid with convective boundary conditions. Res. Phys. 6, 917–924 (2016)
35.
go back to reference Hayat, T.; Nawaz, M.; Asghar, S.; Mesloub, S.: Thermal diffusion and diffuision thermo effects on axisymmetric flow of a second grade fluid. Int. J. Heat Mass Transf. 54, 3031–3041 (2011)MATHCrossRef Hayat, T.; Nawaz, M.; Asghar, S.; Mesloub, S.: Thermal diffusion and diffuision thermo effects on axisymmetric flow of a second grade fluid. Int. J. Heat Mass Transf. 54, 3031–3041 (2011)MATHCrossRef
36.
go back to reference Hayat, T.; Rija, I.; Tanveer, A.; Alsaedi, A.: Soret and Dufour effects in MHD peristalsis of pseudoplastic nanofluid with chemical reaction. J. Mol. Liq. 220, 693–706 (2016)CrossRef Hayat, T.; Rija, I.; Tanveer, A.; Alsaedi, A.: Soret and Dufour effects in MHD peristalsis of pseudoplastic nanofluid with chemical reaction. J. Mol. Liq. 220, 693–706 (2016)CrossRef
37.
go back to reference Asha, S.K.; Deepa, C.K.: Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Res. Eng. 3, 100024 (2019)CrossRef Asha, S.K.; Deepa, C.K.: Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Res. Eng. 3, 100024 (2019)CrossRef
38.
go back to reference Reddy, P.S.; Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al2O3-water and TiO2-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27(4), 1207–1218 (2016)CrossRef Reddy, P.S.; Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al2O3-water and TiO2-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27(4), 1207–1218 (2016)CrossRef
39.
go back to reference Adomain, G.: A review of the decomposition method and some recent results for nonlinear equation. Math. Comput. Mod. 13, 17–43 (1992)MathSciNetCrossRef Adomain, G.: A review of the decomposition method and some recent results for nonlinear equation. Math. Comput. Mod. 13, 17–43 (1992)MathSciNetCrossRef
40.
go back to reference Mekheimer, K.S.; Hemada, K.A.; Raslan, K.R.; Abo-Elkhair, R.E.; Moawad, A.M.A.: Numerical study of a non-linear peristaltic transport Application of Adomian decomposition method. Gen. Math. Notes. 20(2), 22–49 (2014) Mekheimer, K.S.; Hemada, K.A.; Raslan, K.R.; Abo-Elkhair, R.E.; Moawad, A.M.A.: Numerical study of a non-linear peristaltic transport Application of Adomian decomposition method. Gen. Math. Notes. 20(2), 22–49 (2014)
41.
go back to reference Siddiqui, A.M.; Hameed, M.; Siddiqui, B.M.; Babcock, B.S.: Adomian decomposition method applied to study non-linear equations arising in non-Newtonian flows. Appl. Math. Sci. 6(98), 4889–4909 (2012)MathSciNetMATH Siddiqui, A.M.; Hameed, M.; Siddiqui, B.M.; Babcock, B.S.: Adomian decomposition method applied to study non-linear equations arising in non-Newtonian flows. Appl. Math. Sci. 6(98), 4889–4909 (2012)MathSciNetMATH
Metadata
Title
Thermo-Diffusion and Diffusion-Thermo Effects on MHD Third-Grade Nanofluid Flow Driven by Peristaltic Transport
Authors
Asha S. Kotnurkar
Deepa C. Katagi
Publication date
16-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 6/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04590-8

Other articles of this Issue 6/2020

Arabian Journal for Science and Engineering 6/2020 Go to the issue

Premium Partners