Skip to main content
Top

2015 | OriginalPaper | Chapter

15. Thermochemical Processing of Biomass

Authors : Sarma V. Pisupati, Aime H. Tchapda

Published in: Advances in Bioprocess Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Torrefaction can be defined as “a thermochemical process in an inert or limited oxygen environment where biomass is slowly heated to within a specified temperature range and retained there for a stipulated time such that it results in near complete degradation of its hemicellulose content while maximizing mass and energy yield of solid product”. Biomass torrefaction is considered as a pre-treatment technology. Torrefaction can significantly reduce the energy requirement for grinding biomass. The equilibrium moisture content (EMC) and the immersion tests are two tests commonly used to measure the hydrophobicity of torrefied biomass. Pyrolysis is a thermal decomposition of organic materials in the absence of oxygen, producing a solid residue rich in carbon, condensable volatiles (bio-oil) and non-condensable gases (producer gas). The design and optimization of biomass pyrolysis reactors requires analytical description of the process. Simplifications have led to the development of lumped models containing conceptual or pseudo-reactions for modeling pyrolysis. Available models can be arranged into three main groups: one step models, model with competing reactions and models with secondary reactions. Gasification is a partial combustion process that converts carbonaceous materials like biomass into useful gaseous fuels with a useable heating value or chemical feedstock. Combustion of biomass proceeds in various forms: evaporation combustion, decomposition combustion, surface combustion and smoldering combustion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdullah, H., & Wu, H. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels, 23(8), 4174–4181. Abdullah, H., & Wu, H. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels, 23(8), 4174–4181.
go back to reference Acharjee, T. C., Coronella, C. J., & Vasquez, V. R. (2011). Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology, 102(7), 4849–4854. Acharjee, T. C., Coronella, C. J., & Vasquez, V. R. (2011). Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology, 102(7), 4849–4854.
go back to reference Agar, D., & Wihersaari, M. (2012). Bio-coal, torrefied lignocellulosic resources—Key properties for its use in co-firing with fossil coal—Their status. Biomass and Bioenergy, 44, 107–111. Agar, D., & Wihersaari, M. (2012). Bio-coal, torrefied lignocellulosic resources—Key properties for its use in co-firing with fossil coal—Their status. Biomass and Bioenergy, 44, 107–111.
go back to reference Antal, M. J., Jr., & Varhegyi, G. (1995). Cellulose pyrolysis kinetics: The current state of knowledge. Industrial & Engineering Chemistry Research, 34(3), 703–717. Antal, M. J., Jr., & Varhegyi, G. (1995). Cellulose pyrolysis kinetics: The current state of knowledge. Industrial & Engineering Chemistry Research, 34(3), 703–717.
go back to reference Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169–175. Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169–175.
go back to reference Azeez, A. M., Meier, D., & Odermatt, J. (2011). Temperature dependence of fast pyrolysis volatile products from European and African biomasses. Journal of Analytical and Applied Pyrolysis, 90(2), 81–92. Azeez, A. M., Meier, D., & Odermatt, J. (2011). Temperature dependence of fast pyrolysis volatile products from European and African biomasses. Journal of Analytical and Applied Pyrolysis, 90(2), 81–92.
go back to reference Banyasz, J. L., Li, S., Lyons-Hart, J., & Shafer, K. H. (2001). Gas evolution and the mechanism of cellulose pyrolysis. Fuel, 80(12), 1757–1763. Banyasz, J. L., Li, S., Lyons-Hart, J., & Shafer, K. H. (2001). Gas evolution and the mechanism of cellulose pyrolysis. Fuel, 80(12), 1757–1763.
go back to reference Basu, P. (2010a). Biomass gasification and pyrolysis: Practical design and theory. Burlington, MA: Elsevier. Basu, P. (2010a). Biomass gasification and pyrolysis: Practical design and theory. Burlington, MA: Elsevier.
go back to reference Basu, P. (2010b). Chapter 3—Pyrolysis and torrefaction. In P. Basu (Ed.), Biomass gasification and pyrolysis (pp. 65–96). Boston: Academic. Basu, P. (2010b). Chapter 3—Pyrolysis and torrefaction. In P. Basu (Ed.), Biomass gasification and pyrolysis (pp. 65–96). Boston: Academic.
go back to reference Basu, P. (2013). Chapter 4 - Torrefaction. In P. Basu (Ed.), Biomass gasification, pyrolysis and torrefaction (2nd ed., pp. 87–145). Boston: Academic. Basu, P. (2013). Chapter 4 - Torrefaction. In P. Basu (Ed.), Biomass gasification, pyrolysis and torrefaction (2nd ed., pp. 87–145). Boston: Academic.
go back to reference Bellur, S. R., Coronella, C. J., & Vásquez, V. R. (2009). Analysis of biosolids equilibrium moisture and drying. Environmental Progress & Sustainable Energy, 28(2), 291–298. Bellur, S. R., Coronella, C. J., & Vásquez, V. R. (2009). Analysis of biosolids equilibrium moisture and drying. Environmental Progress & Sustainable Energy, 28(2), 291–298.
go back to reference Bergman, P. C. A., Boersma, A. R., Kiel, J. H. A., Wilberink, R. W. A., Bodenstaff H., & Heere P. G. T. (2003). Torrefaction for entrained flow gasification of biomass. Petten, The Netherlands, Energy Research Centre of the Netherlands (ECN) and TU/e, ECN-C-05-067. Bergman, P. C. A., Boersma, A. R., Kiel, J. H. A., Wilberink, R. W. A., Bodenstaff H., & Heere P. G. T. (2003). Torrefaction for entrained flow gasification of biomass. Petten, The Netherlands, Energy Research Centre of the Netherlands (ECN) and TU/e, ECN-C-05-067.
go back to reference Bergman, P. C. A., Boersma, A. R., Zwart R. W. R., & Kiel, J. H. A. (2005). Torrefaction for biomass co-firing in existing coal-fired power stations “BIOCOAL”. Petten, The Netherlands, Energy Research Centre of the Netherlands (ECN), ECN-C--05-013. Bergman, P. C. A., Boersma, A. R., Zwart R. W. R., & Kiel, J. H. A. (2005). Torrefaction for biomass co-firing in existing coal-fired power stations “BIOCOAL”. Petten, The Netherlands, Energy Research Centre of the Netherlands (ECN), ECN-C--05-013.
go back to reference Bhuiyan, M. T., Hirai, N., & Sobue, N. (2000). Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431–436. Bhuiyan, M. T., Hirai, N., & Sobue, N. (2000). Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431–436.
go back to reference Bhuiyan, M. T., Hirai, N., & Sobue, N. (2001). Effect of intermittent heat treatment on crystallinity in wood cellulose. Journal of Wood Science, 47(5), 336–341. Bhuiyan, M. T., Hirai, N., & Sobue, N. (2001). Effect of intermittent heat treatment on crystallinity in wood cellulose. Journal of Wood Science, 47(5), 336–341.
go back to reference Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546. Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.
go back to reference Bradbury, A. G. W., Sakai, Y., & Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23(11), 3271–3280. Bradbury, A. G. W., Sakai, Y., & Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23(11), 3271–3280.
go back to reference Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellullose Chemical Technology, 44(9), 353–363. Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellullose Chemical Technology, 44(9), 353–363.
go back to reference Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856.
go back to reference Bridgeman, T. G., Jones, J. M., Williams, A., & Waldron, D. J. (2010). An investigation of the grindability of two torrefied energy crops. Fuel, 89(12), 3911–3918. Bridgeman, T. G., Jones, J. M., Williams, A., & Waldron, D. J. (2010). An investigation of the grindability of two torrefied energy crops. Fuel, 89(12), 3911–3918.
go back to reference Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.
go back to reference Broido, A., Javier-Son, A. C., Ouano, A. C., & Barrall, E. M. (1973). Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. Journal of Applied Polymer Science, 17(12), 3627–3635. Broido, A., Javier-Son, A. C., Ouano, A. C., & Barrall, E. M. (1973). Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. Journal of Applied Polymer Science, 17(12), 3627–3635.
go back to reference Broido, A., & Nelson, M. A. (1975). Char yield on pyrolysis of cellulose. Combustion and Flame, 24, 263–268. Broido, A., & Nelson, M. A. (1975). Char yield on pyrolysis of cellulose. Combustion and Flame, 24, 263–268.
go back to reference Brown, R. C. (2011). Thermochemical processing of biomass: Conversion into fuels, chemicals and power. West Sussex, UK: John Wiley & Sons. Brown, R. C. (2011). Thermochemical processing of biomass: Conversion into fuels, chemicals and power. West Sussex, UK: John Wiley & Sons.
go back to reference Brunow, G., & Lundquist, K. (2011). Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In C. Heitner, D. Dimmel, & J. Schmidt (Eds.), Lignin and lignans: Advances in chemistry (pp. 167–299). Boca Raton, FL: CRC Press. Brunow, G., & Lundquist, K. (2011). Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In C. Heitner, D. Dimmel, & J. Schmidt (Eds.), Lignin and lignans: Advances in chemistry (pp. 167–299). Boca Raton, FL: CRC Press.
go back to reference Chan, W.-C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513. Chan, W.-C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513.
go back to reference Chen, D., Zhou, J., Zhang, Q., Zhu, X., & Lu, Q. (2014). Upgrading of rice husk by torrefaction and its influence on the fuel properties. BioResources, 9(4), 5893–5905. Chen, D., Zhou, J., Zhang, Q., Zhu, X., & Lu, Q. (2014). Upgrading of rice husk by torrefaction and its influence on the fuel properties. BioResources, 9(4), 5893–5905.
go back to reference Chen, W.-H., Cheng, W.-Y., Lu, K.-M., & Huang, Y.-P. (2011). An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy, 88(11), 3636–3644. Chen, W.-H., Cheng, W.-Y., Lu, K.-M., & Huang, Y.-P. (2011). An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy, 88(11), 3636–3644.
go back to reference Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011a). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012–3021. Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011a). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012–3021.
go back to reference Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011b). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012–3021. Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011b). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012–3021.
go back to reference Chew, J. J., & Doshi, V. (2011). Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews, 15(8), 4212–4222. Chew, J. J., & Doshi, V. (2011). Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews, 15(8), 4212–4222.
go back to reference Collard, F.-X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608. Collard, F.-X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608.
go back to reference Collard, F.-X., Blin, J., Bensakhria, A., & Valette, J. (2012). Influence of impregnated metal on the pyrolysis conversion of biomass constituents. Journal of Analytical and Applied Pyrolysis, 95, 213–226. Collard, F.-X., Blin, J., Bensakhria, A., & Valette, J. (2012). Influence of impregnated metal on the pyrolysis conversion of biomass constituents. Journal of Analytical and Applied Pyrolysis, 95, 213–226.
go back to reference Deng, J., Wang, G.-j., Kuang, J.-h., Zhang, Y.-l., & Luo, Y.-H. (2009). Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis, 86(2), 331–337. Deng, J., Wang, G.-j., Kuang, J.-h., Zhang, Y.-l., & Luo, Y.-H. (2009). Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis, 86(2), 331–337.
go back to reference Di Blasi, C. (1998). Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis, 47(1), 43–64. Di Blasi, C. (1998). Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis, 47(1), 43–64.
go back to reference Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140. Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140.
go back to reference Di Blasi, C., & Russo, G. (1993). Modeling of transport phenomena and kinetics of biomass pyrolysis. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 906–921). Netherlands: Springer. Di Blasi, C., & Russo, G. (1993). Modeling of transport phenomena and kinetics of biomass pyrolysis. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 906–921). Netherlands: Springer.
go back to reference Drift, A. V. D., & Boerrigter, H. (2006). Synthesis gas from biomass for fuels and chemicals. Pettel, The Netherlands, Energy Research Center of the Netherlands (ECN). Drift, A. V. D., & Boerrigter, H. (2006). Synthesis gas from biomass for fuels and chemicals. Pettel, The Netherlands, Energy Research Center of the Netherlands (ECN).
go back to reference Drift, A. V. D., Boerrigter, H., Coda, B., Cieplik, M. K., & Hemmes, K. (2004). Entrained flow gasification of biomass: Ash behaviour, feeding issues, and system analyses. Pettel, The Netherlands, Energy Research Center of the Netherlands (ECN). Drift, A. V. D., Boerrigter, H., Coda, B., Cieplik, M. K., & Hemmes, K. (2004). Entrained flow gasification of biomass: Ash behaviour, feeding issues, and system analyses. Pettel, The Netherlands, Energy Research Center of the Netherlands (ECN).
go back to reference Duca, D., Riva, G., Pedretti, E. F., Toscano, G., Chiara, Mengarelli., & Rossini, G. (2014). Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain. Journal of Agricultural Engineering XLV(416): 97–102. Duca, D., Riva, G., Pedretti, E. F., Toscano, G., Chiara, Mengarelli., & Rossini, G. (2014). Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain. Journal of Agricultural Engineering XLV(416): 97–102.
go back to reference Ergun, S. (1956). Kinetics of the reaction of carbon with carbon dioxide. The Journal of Physical Chemistry, 60(4), 480–485. Ergun, S. (1956). Kinetics of the reaction of carbon with carbon dioxide. The Journal of Physical Chemistry, 60(4), 480–485.
go back to reference Feldman, D. (1985). Wood—chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. Journal of Polymer Science, Polymer Letters Edition, 23(11), 601–602. Feldman, D. (1985). Wood—chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. Journal of Polymer Science, Polymer Letters Edition, 23(11), 601–602.
go back to reference Felfli, F. F., Luengo, C. A., Suárez, J. A., & Beatón, P. A. (2005). Wood briquette torrefaction. Energy for Sustainable Development, 9(3), 19–22. Felfli, F. F., Luengo, C. A., Suárez, J. A., & Beatón, P. A. (2005). Wood briquette torrefaction. Energy for Sustainable Development, 9(3), 19–22.
go back to reference Ferro, D. T., Vigouroux, V., Grimm, A., & Zanzi, R. (2004). Torrefaction of agricultural and forest residues. Guantánamo, Cuba, Cubasolar: Cubasolar. Ferro, D. T., Vigouroux, V., Grimm, A., & Zanzi, R. (2004). Torrefaction of agricultural and forest residues. Guantánamo, Cuba, Cubasolar: Cubasolar.
go back to reference Girard, P., & Shah, N. (1989). Recent developments on torrefied wood – An alternative to charcoal for reducting deforestation. FAO/CNRE Workshop, Poros, Norway, FAO. Girard, P., & Shah, N. (1989). Recent developments on torrefied wood – An alternative to charcoal for reducting deforestation. FAO/CNRE Workshop, Poros, Norway, FAO.
go back to reference Henrich, E., Dahmen, N., & Dinjus, E. (2009). Cost estimate for biosynfuel production via biosyncrude gasification. Biofuels, Bioproducts and Biorefining, 3(1), 28–41. Henrich, E., Dahmen, N., & Dinjus, E. (2009). Cost estimate for biosynfuel production via biosyncrude gasification. Biofuels, Bioproducts and Biorefining, 3(1), 28–41.
go back to reference Henrich, E., Dahmen, N., Raffelt, K., Stahl, R., & Weirich, F.(2007). The Karlsruhe "BIOLIQ" process for biomass gasification. 2nd European summer school on renewable motor fuels, Warsaw, Poland. Henrich, E., Dahmen, N., Raffelt, K., Stahl, R., & Weirich, F.(2007). The Karlsruhe "BIOLIQ" process for biomass gasification. 2nd European summer school on renewable motor fuels, Warsaw, Poland.
go back to reference Henrich, E., & Dinjus, E. (2002). Tar-free, high pressure synthesis gas from biomass. Expert meeting on pyrolysis and gasification of biomass. Strasbourg, France. Henrich, E., & Dinjus, E. (2002). Tar-free, high pressure synthesis gas from biomass. Expert meeting on pyrolysis and gasification of biomass. Strasbourg, France.
go back to reference Henrich, E., & Weirich, F. (2004). Pressurized entrained flow gasifiers for biomass. Environmental Engineering Science, 21(1), 53–64. Henrich, E., & Weirich, F. (2004). Pressurized entrained flow gasifiers for biomass. Environmental Engineering Science, 21(1), 53–64.
go back to reference Henriksson, G., Li, J., Zhang, L., & Lindstrom, M. E. (2010). Lignin utilization. In M. Crocker (Ed.), Thermochemical conversion of biomass to liquid fuels and chemicals (pp. 222–262). Cambridge, UK: The Royal Society of Chemistry. Henriksson, G., Li, J., Zhang, L., & Lindstrom, M. E. (2010). Lignin utilization. In M. Crocker (Ed.), Thermochemical conversion of biomass to liquid fuels and chemicals (pp. 222–262). Cambridge, UK: The Royal Society of Chemistry.
go back to reference Higman, C., & Burgt, M. V. D. (2008). Gasification. New York, USA: Elsevier. Higman, C., & Burgt, M. V. D. (2008). Gasification. New York, USA: Elsevier.
go back to reference Husain, A., & Kelman, A. (1959). Tissue is disintegrated. In J. G. Horsfall & A. E. Dimond (Eds.), Plant pathology (pp. 143–188). New York: Academic Press. Husain, A., & Kelman, A. (1959). Tissue is disintegrated. In J. G. Horsfall & A. E. Dimond (Eds.), Plant pathology (pp. 143–188). New York: Academic Press.
go back to reference Ibrahim, R. H. H., Darvell, L. I., Jones, J. M., & Williams, A. (2013). Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 103, 21–30. Ibrahim, R. H. H., Darvell, L. I., Jones, J. M., & Williams, A. (2013). Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 103, 21–30.
go back to reference Jakab, E., Faix, O., Till, F., & Székely, T. (1995). Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. Journal of Analytical and Applied Pyrolysis, 35(2), 167–179. Jakab, E., Faix, O., Till, F., & Székely, T. (1995). Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. Journal of Analytical and Applied Pyrolysis, 35(2), 167–179.
go back to reference Jerrold, E. W., & Roger, M. R. (2005). Chemistry of wood strength (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press. Jerrold, E. W., & Roger, M. R. (2005). Chemistry of wood strength (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press.
go back to reference Kim, Y.-H., Lee, S.-M., Lee, H.-W., & Lee, J.-W. (2012). Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresource Technology, 116, 120–125. Kim, Y.-H., Lee, S.-M., Lee, H.-W., & Lee, J.-W. (2012). Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresource Technology, 116, 120–125.
go back to reference Kobayashi, H. (1976). Devolatilization of pulverized coal at high temperatures. Cambridge, MA: Dept. of Mechanical Engineering, Massachusetts Institute of Technology. Kobayashi, H. (1976). Devolatilization of pulverized coal at high temperatures. Cambridge, MA: Dept. of Mechanical Engineering, Massachusetts Institute of Technology.
go back to reference Koukios, E. (1993). Progress in thermochemical, solid-state refining of biofuels — From research to commercialization. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 1678–1692). Netherlands: Springer. Koukios, E. (1993). Progress in thermochemical, solid-state refining of biofuels — From research to commercialization. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 1678–1692). Netherlands: Springer.
go back to reference Lédé, J., Blanchard, F., & Boutin, O. (2002). Radiant flash pyrolysis of cellulose pellets: products and mechanisms involved in transient and steady state conditions. Fuel, 81(10), 1269–1279. Lédé, J., Blanchard, F., & Boutin, O. (2002). Radiant flash pyrolysis of cellulose pellets: products and mechanisms involved in transient and steady state conditions. Fuel, 81(10), 1269–1279.
go back to reference Lee, J., Buchanan, A. C., III, Evans, B., & Kidder, M. (2013). Oxygenation of biochar for enhanced cation exchange capacity. In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 35–45). New York: Springer. Lee, J., Buchanan, A. C., III, Evans, B., & Kidder, M. (2013). Oxygenation of biochar for enhanced cation exchange capacity. In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 35–45). New York: Springer.
go back to reference Li, H., Qu, Y., & Xu, J. (2015). Microwave-assisted conversion of lignin. In Z. Fang, J. R. L. Smith, & X. Qi (Eds.), Production of biofuels and chemicals with microwave (3rd ed., pp. 61–82). Netherlands: Springer. Li, H., Qu, Y., & Xu, J. (2015). Microwave-assisted conversion of lignin. In Z. Fang, J. R. L. Smith, & X. Qi (Eds.), Production of biofuels and chemicals with microwave (3rd ed., pp. 61–82). Netherlands: Springer.
go back to reference Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730.
go back to reference Lomax, J. A., Commandeur, J. M., Arisz, P. W., & Boon, J. J. (1991). Characterisation of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. Journal of Analytical and Applied Pyrolysis, 19, 65–79. Lomax, J. A., Commandeur, J. M., Arisz, P. W., & Boon, J. J. (1991). Characterisation of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. Journal of Analytical and Applied Pyrolysis, 19, 65–79.
go back to reference Lu, J.-J., & Chen, W.-H. (2013). Product yields and characteristics of corncob waste under various torrefaction atmospheres. Energies, 7(1), 13–27. Lu, J.-J., & Chen, W.-H. (2013). Product yields and characteristics of corncob waste under various torrefaction atmospheres. Energies, 7(1), 13–27.
go back to reference Lu, Q., Yang, X.-C., Dong, C.-q., Zhang, Z.-f., Zhang, X.-M., & Zhu, X.-F. (2011). Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 92(2), 430–438. Lu, Q., Yang, X.-C., Dong, C.-q., Zhang, Z.-f., Zhang, X.-M., & Zhu, X.-F. (2011). Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 92(2), 430–438.
go back to reference Lv, G.-J., Wu S.-B., & Lou R. (2010). Kinetic study for the thermal decomposition of hemicellulose isolated from corn stalk. Lv, G.-J., Wu S.-B., & Lou R. (2010). Kinetic study for the thermal decomposition of hemicellulose isolated from corn stalk.
go back to reference Madorsky, S. L., Hart, V. E., & Straus, S. (1956). Pyrolysis of cellulose in a vacuum. Journal of Research of the National Bureau of Standards, 56(6), 343–354. Madorsky, S. L., Hart, V. E., & Straus, S. (1956). Pyrolysis of cellulose in a vacuum. Journal of Research of the National Bureau of Standards, 56(6), 343–354.
go back to reference Mamleev, V., Bourbigot, S., Le Bras, M., & Yvon, J. (2009). The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: Interdependence of the steps. Journal of Analytical and Applied Pyrolysis, 84(1), 1–17. Mamleev, V., Bourbigot, S., Le Bras, M., & Yvon, J. (2009). The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: Interdependence of the steps. Journal of Analytical and Applied Pyrolysis, 84(1), 1–17.
go back to reference McGrath, T. E., Chan, W. G., & Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1–2), 51–70. McGrath, T. E., Chan, W. G., & Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1–2), 51–70.
go back to reference Medic, D. (2012). Investigation of torrefaction process parameters and characterization of torrefied biomass. Iowa: Agricultural Engineering; Biorenewable Resources and Technology Ames, Iowa State University. Medic, D. (2012). Investigation of torrefaction process parameters and characterization of torrefied biomass. Iowa: Agricultural Engineering; Biorenewable Resources and Technology Ames, Iowa State University.
go back to reference Mei, Y., Liu, R., Yang, Q., Yang, H., Shao, J., Draper, C., et al. (2015). Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresource Technology, 177, 355–360. Mei, Y., Liu, R., Yang, Q., Yang, H., Shao, J., Draper, C., et al. (2015). Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresource Technology, 177, 355–360.
go back to reference Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339. Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339.
go back to reference Mullen, C. A., & Boateng, A. A. (2011). Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 90(2), 197–203. Mullen, C. A., & Boateng, A. A. (2011). Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 90(2), 197–203.
go back to reference Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass pyrolysis. In M. Dmitry Yu (Ed.), Advances in chemical engineering (42nd ed., pp. 75–139). New York: Academic Press. Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass pyrolysis. In M. Dmitry Yu (Ed.), Advances in chemical engineering (42nd ed., pp. 75–139). New York: Academic Press.
go back to reference Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.
go back to reference Neves, D., Thunman, H., Matos, A., Tarelho, L., & Gómez-Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science, 37(5), 611–630. Neves, D., Thunman, H., Matos, A., Tarelho, L., & Gómez-Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science, 37(5), 611–630.
go back to reference Nunn, T. R., Howard, J. B., Longwell, J. P., & Peters, W. A. (1985a). Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Industrial & Engineering Chemistry Process Design and Development, 24(3), 844–852. Nunn, T. R., Howard, J. B., Longwell, J. P., & Peters, W. A. (1985a). Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Industrial & Engineering Chemistry Process Design and Development, 24(3), 844–852.
go back to reference Nunn, T. R., Howard, J. B., Longwell, J. P., & Peters, W. A. (1985b). Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Industrial & Engineering Chemistry Process Design and Development, 24(3), 836–844. Nunn, T. R., Howard, J. B., Longwell, J. P., & Peters, W. A. (1985b). Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Industrial & Engineering Chemistry Process Design and Development, 24(3), 836–844.
go back to reference Offrion, V. F. O. (1900). Improvements in the process of and apparatus for rationally and continuously treating or torrefying coffee. Great Britain, Offrion, V. F. O. Offrion, V. F. O. (1900). Improvements in the process of and apparatus for rationally and continuously treating or torrefying coffee. Great Britain, Offrion, V. F. O.
go back to reference Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607–613. Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607–613.
go back to reference Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil Science and Plant Nutrition, 13(4), 991–1002. Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil Science and Plant Nutrition, 13(4), 991–1002.
go back to reference Pastorova, I., Botto, R. E., Arisz, P. W., & Boon, J. J. (1994). Cellulose char structure: A combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research, 262(1), 27–47. Pastorova, I., Botto, R. E., Arisz, P. W., & Boon, J. J. (1994). Cellulose char structure: A combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research, 262(1), 27–47.
go back to reference Pettersen, R., Tshabalala, M. A., Han, J. S., Rowell, M. R., & Rowell, J. S. (2005). Cell wall chemistry (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press. Pettersen, R., Tshabalala, M. A., Han, J. S., Rowell, M. R., & Rowell, J. S. (2005). Cell wall chemistry (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press.
go back to reference Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246–1253. Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246–1253.
go back to reference Pimchuai, A., Dutta, A., & Basu, P. (2010). Torrefaction of agriculture residue to enhance combustible properties. Energy & Fuels, 24(9), 4638–4645. Pimchuai, A., Dutta, A., & Basu, P. (2010). Torrefaction of agriculture residue to enhance combustible properties. Energy & Fuels, 24(9), 4638–4645.
go back to reference Pohlmann, J. G., Osório, E., Vilela, A. C. F., Diez, M. A., & Borrego, A. G. (2014). Integrating physicochemical information to follow the transformations of biomass upon torrefaction and low-temperature carbonization. Fuel, 131, 17–27. Pohlmann, J. G., Osório, E., Vilela, A. C. F., Diez, M. A., & Borrego, A. G. (2014). Integrating physicochemical information to follow the transformations of biomass upon torrefaction and low-temperature carbonization. Fuel, 131, 17–27.
go back to reference Probstein, R. F., & Hicks, R. E. (2006). Synthetic fuels. Mineola, NY: NY, Dover Publications Inc. Probstein, R. F., & Hicks, R. E. (2006). Synthetic fuels. Mineola, NY: NY, Dover Publications Inc.
go back to reference Raffelt, K., Henrich, E., Koegel, A., Stahl, R., Steinhardt, J., & Weirich, F. (2004). The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Applied Biochemistry and Biotechnology, 129(1-3), 153–164. Raffelt, K., Henrich, E., Koegel, A., Stahl, R., Steinhardt, J., & Weirich, F. (2004). The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Applied Biochemistry and Biotechnology, 129(1-3), 153–164.
go back to reference Ralph, J., Peng, J., Lu, F., Hatfield, R. D., & Helm, R. F. (1999). Are lignins optically active? Journal of Agricultural and Food Chemistry, 47(8), 2991–2996. Ralph, J., Peng, J., Lu, F., Hatfield, R. D., & Helm, R. F. (1999). Are lignins optically active? Journal of Agricultural and Food Chemistry, 47(8), 2991–2996.
go back to reference Reed, T., & Gaur, S. (1997). The high heat of fast pyrolysis for large particles. In A. V. Bridgwater & D. G. B. Boocock (Eds.), Developments in thermochemical biomass conversion (pp. 97–103). Netherlands: Springer. Reed, T., & Gaur, S. (1997). The high heat of fast pyrolysis for large particles. In A. V. Bridgwater & D. G. B. Boocock (Eds.), Developments in thermochemical biomass conversion (pp. 97–103). Netherlands: Springer.
go back to reference Repellin, V., Govin, A., Rolland, M., & Guyonnet, R. (2010). Energy requirement for fine grinding of torrefied wood. Biomass and Bioenergy, 34(7), 923–930. Repellin, V., Govin, A., Rolland, M., & Guyonnet, R. (2010). Energy requirement for fine grinding of torrefied wood. Biomass and Bioenergy, 34(7), 923–930.
go back to reference Rowell, R. M. (2005). Moisture properties (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press. Rowell, R. M. (2005). Moisture properties (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press.
go back to reference Saleh, S. B., Hansen, B. B., Jensen, P. A., & Dam-Johansen, K. (2013). Efficient fuel pretreatment: Simultaneous torrefaction and grinding of biomass. Energy & Fuels, 27(12), 7531–7540. Saleh, S. B., Hansen, B. B., Jensen, P. A., & Dam-Johansen, K. (2013). Efficient fuel pretreatment: Simultaneous torrefaction and grinding of biomass. Energy & Fuels, 27(12), 7531–7540.
go back to reference Samolada, M. C., & Vasalos, I. A. (1991). A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel, 70(7), 883–889. Samolada, M. C., & Vasalos, I. A. (1991). A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel, 70(7), 883–889.
go back to reference Satpathy, S. K., Tabil, L. G., Meda, V., Naik, S. N., & Prasad, R. (2014). Torrefaction of wheat and barley straw after microwave heating. Fuel, 124, 269–278. Satpathy, S. K., Tabil, L. G., Meda, V., Naik, S. N., & Prasad, R. (2014). Torrefaction of wheat and barley straw after microwave heating. Fuel, 124, 269–278.
go back to reference Scheirs, J., Camino, G., & Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal, 37(5), 933–942. Scheirs, J., Camino, G., & Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal, 37(5), 933–942.
go back to reference Schobert, H. H. (2013). Chemistry of fossil fuels and biofuels. Cambridge, UK: Cambridge University Press. Schobert, H. H. (2013). Chemistry of fossil fuels and biofuels. Cambridge, UK: Cambridge University Press.
go back to reference Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3(4), 283–305. Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3(4), 283–305.
go back to reference Shang, L., Ahrenfeldt, J., Holm, J. K., Sanadi, A. R., Barsberg, S., Thomsen, T., et al. (2012). Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass and Bioenergy, 40, 63–70. Shang, L., Ahrenfeldt, J., Holm, J. K., Sanadi, A. R., Barsberg, S., Thomsen, T., et al. (2012). Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass and Bioenergy, 40, 63–70.
go back to reference Silakul, T., & Jindal, V. K. (2002). Equilibrium moisture content isotherms of mungbean. International Journal of Food Properties, 5(1), 25–35. Silakul, T., & Jindal, V. K. (2002). Equilibrium moisture content isotherms of mungbean. International Journal of Food Properties, 5(1), 25–35.
go back to reference Smith, B. R. J., Loganathan, M., & Shantha, M. S. (2010). A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering, 8(1). Smith, B. R. J., Loganathan, M., & Shantha, M. S. (2010). A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering, 8(1).
go back to reference Smith, H. (1977). The molecular biology of plant cell wall. Berkeley: University of California Press. Smith, H. (1977). The molecular biology of plant cell wall. Berkeley: University of California Press.
go back to reference Sohi, S., Gaunt, J., & Atwood, J. (2013). Biochar in growing media: A sustainability and feasibility assessment. Edinburgh: UK Biochar Research Center. Sohi, S., Gaunt, J., & Atwood, J. (2013). Biochar in growing media: A sustainability and feasibility assessment. Edinburgh: UK Biochar Research Center.
go back to reference Stelte, W. (2014). Optimization of product specific processing parameters for the production of fuel pellets from torrefied biomass. Taastrup, Denmark: Center for Biomass and Biorefinery, Danish Technological Institute. Stelte, W. (2014). Optimization of product specific processing parameters for the production of fuel pellets from torrefied biomass. Taastrup, Denmark: Center for Biomass and Biorefinery, Danish Technological Institute.
go back to reference Sule, I. (2012). Torrefaction behaviour of agricultural biomass. ON, Canada: School of Engineering Guelph, University of Guelph. Sule, I. (2012). Torrefaction behaviour of agricultural biomass. ON, Canada: School of Engineering Guelph, University of Guelph.
go back to reference Svoboda, K., Pohořelý, M., Hartman, M., & Martinec, J. (2009). Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology, 90(5), 629–635. Svoboda, K., Pohořelý, M., Hartman, M., & Martinec, J. (2009). Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology, 90(5), 629–635.
go back to reference Tchapda, A. H., & Pisupati, S. V. (2014). A review of thermal co-conversion of coal and biomass/waste. Energies, 7(3), 1098–1148. Tchapda, A. H., & Pisupati, S. V. (2014). A review of thermal co-conversion of coal and biomass/waste. Energies, 7(3), 1098–1148.
go back to reference Thiel, F. C. (1897). New or improved roaster or torrefier for coffee and other vegetable substances. Great Britain, Thiel, F. C. Thiel, F. C. (1897). New or improved roaster or torrefier for coffee and other vegetable substances. Great Britain, Thiel, F. C.
go back to reference Thunman, H., & Leckner, B. (2007). Thermo chemical conversion of biomass and wastes. Nordic graduate school BiofuelGS-2. Göteborg, Sweden: Chalmers. Thunman, H., & Leckner, B. (2007). Thermo chemical conversion of biomass and wastes. Nordic graduate school BiofuelGS-2. Göteborg, Sweden: Chalmers.
go back to reference Thurner, F., & Mann, U. (1981). Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 20(3), 482–488. Thurner, F., & Mann, U. (1981). Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 20(3), 482–488.
go back to reference Tumuluru, J. S., Hess, J. R., Boardman, R. D., Wright, C. T., & Westover, T. L. (2012). Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Industrial Biotechnology, 8(3), 113–132. Tumuluru, J. S., Hess, J. R., Boardman, R. D., Wright, C. T., & Westover, T. L. (2012). Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Industrial Biotechnology, 8(3), 113–132.
go back to reference Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242.
go back to reference van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748–3762. van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748–3762.
go back to reference Varhegyi, G., Jakab, E., & Antal, M. J. (1994). Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy & Fuels, 8(6), 1345–1352. Varhegyi, G., Jakab, E., & Antal, M. J. (1994). Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy & Fuels, 8(6), 1345–1352.
go back to reference Wang, G., Luo, Y., Deng, J., Kuang, J., & Zhang, Y. (2011). Pretreatment of biomass by torrefaction. Chinese Science Bulletin, 56(14), 1442–1448. Wang, G., Luo, Y., Deng, J., Kuang, J., & Zhang, Y. (2011). Pretreatment of biomass by torrefaction. Chinese Science Bulletin, 56(14), 1442–1448.
go back to reference Wannapeera, J., Fungtammasan, B., & Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis, 92(1), 99–105. Wannapeera, J., Fungtammasan, B., & Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis, 92(1), 99–105.
go back to reference Wardrop, A. B. (1964). The structure and formation of the cell wall in xylem. In M. H. Zimmermann (Ed.), The formation of wood in forest trees (pp. 87–134). New York: Academic Press. Wardrop, A. B. (1964). The structure and formation of the cell wall in xylem. In M. H. Zimmermann (Ed.), The formation of wood in forest trees (pp. 87–134). New York: Academic Press.
go back to reference Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110, 130–137. Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110, 130–137.
go back to reference Wichman, I., & Melaaen, M. (1993). Modeling the pyrolysis of cellulosic materials. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 887–905). Netherlands: Springer. Wichman, I., & Melaaen, M. (1993). Modeling the pyrolysis of cellulosic materials. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 887–905). Netherlands: Springer.
go back to reference Wooten, J. B., Seeman, J. I., & Hajaligol, M. R. (2003). Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy & Fuels, 18(1), 1–15. Wooten, J. B., Seeman, J. I., & Hajaligol, M. R. (2003). Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy & Fuels, 18(1), 1–15.
go back to reference Xue, G., Kwapinska, M., Kwapinski, W., Czajka, K. M., Kennedy, J., & Leahy, J. J. (2014). Impact of torrefaction on properties of Miscanthus giganteus relevant to gasification. Fuel, 121, 189–197. Xue, G., Kwapinska, M., Kwapinski, W., Czajka, K. M., Kennedy, J., & Leahy, J. J. (2014). Impact of torrefaction on properties of Miscanthus giganteus relevant to gasification. Fuel, 121, 189–197.
go back to reference Yan, W., Acharjee, T. C., Coronella, C. J., & Vásquez, V. R. (2009). Thermal pretreatment of lignocellulosic biomass. Environmental Progress & Sustainable Energy, 28(3), 435–440. Yan, W., Acharjee, T. C., Coronella, C. J., & Vásquez, V. R. (2009). Thermal pretreatment of lignocellulosic biomass. Environmental Progress & Sustainable Energy, 28(3), 435–440.
go back to reference Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.
go back to reference Zaror, C. A., & Pyle, D. L. (1986). Competitive reactions model for the pyrolysis of lignocellulose: A critical study. Journal of Analytical and Applied Pyrolysis, 10(1), 1–12. Zaror, C. A., & Pyle, D. L. (1986). Competitive reactions model for the pyrolysis of lignocellulose: A critical study. Journal of Analytical and Applied Pyrolysis, 10(1), 1–12.
go back to reference Zulfiqar, M., Moghtaderi, B., & Wall, T. F. (2006). Flow properties of biomass and coal blends. Fuel Processing Technology, 87, 281–288. Zulfiqar, M., Moghtaderi, B., & Wall, T. F. (2006). Flow properties of biomass and coal blends. Fuel Processing Technology, 87, 281–288.
Metadata
Title
Thermochemical Processing of Biomass
Authors
Sarma V. Pisupati
Aime H. Tchapda
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_15