Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 9/2023

25-11-2022 | Research Article-Mechanical Engineering

Thermodynamic Analysis of a Reconfigured 500-MWe Supercritical Thermal Power Plant by Integrating Solid Oxide Fuel Cell and a Gas Turbine

Authors: A. Pruthvi Deep, Sujit Karmakar

Published in: Arabian Journal for Science and Engineering | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, a detailed thermodynamic analysis is performed on an integrated gasification fuel cell-combined cycle (IGFC-CC), which is a reconfigured standalone 500-MWe supercritical thermal power plant. The plant is powered by the syngas obtained through gasification of Indian high ash coal. The modeling and analysis of the plants are done using a commercially available Fortran-based software program called ‘CYCLE-TEMPO.’ IGFC-CC is configured with the recirculation of anode and cathode effluents of SOFC to its respective electrode inlets. The 1st and 2nd law analysis has shown the standalone plant’s energy and exergy efficiencies to be 38.22% and 33.83%. These efficiencies are 52.83% and 46.76%, when evaluated for the proposed plant considering RR value as 0.9 of anode effluent and 20% excess air being supplied to the combustor downstream of SOFC. The exergy analysis of the standalone and proposed reconfigured plant indicates major irreversibilities are associated with the furnace and gasifier, respectively, i.e., around 33.2% and 21.6%. A comparative study between the standalone and proposed IGFC-CC plant has shown a reduction in the specific fuel consumption of the proposed plant from 0.32 to 0.54 kg/kWh of the standalone plant. The specific CO2 emission from IGFC-CC is noticed to be 0.46 kg/kWh, which is 40.4% less than emission from standalone plant apart from enhancement in the energy as well as exergy efficiencies. The economic analysis of the proposed reconfigured plant has yielded the levelized cost of electricity at Rs. 5.93/kWh.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kopas, J.; York, E.; Jin, X.; Harish, S.P.; Kennedy, R.; Shen, S.V.; Urpelainen, J.: Environmental justice in India: incidence of air pollution from coal-fired power plants. Ecol. Econ. 176, 106711 (2020)CrossRef Kopas, J.; York, E.; Jin, X.; Harish, S.P.; Kennedy, R.; Shen, S.V.; Urpelainen, J.: Environmental justice in India: incidence of air pollution from coal-fired power plants. Ecol. Econ. 176, 106711 (2020)CrossRef
3.
go back to reference Kwan, T.H.; Katsushi, F.; Shen, Y.; Yin, S.; Zhang, Y.; Kase, K.; Yao, Q.: Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration. Renew. Sustain. Energy Rev. 128, 109897 (2020)CrossRef Kwan, T.H.; Katsushi, F.; Shen, Y.; Yin, S.; Zhang, Y.; Kase, K.; Yao, Q.: Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration. Renew. Sustain. Energy Rev. 128, 109897 (2020)CrossRef
4.
go back to reference Singh, U.; Rao, A.B.; Chandel, M.K.: Economic implications of CO2 capture from the existing as well as proposed coal-fired power plants in India under various policy scenarios. Energy Procedia 114, 7638–7650 (2017)CrossRef Singh, U.; Rao, A.B.; Chandel, M.K.: Economic implications of CO2 capture from the existing as well as proposed coal-fired power plants in India under various policy scenarios. Energy Procedia 114, 7638–7650 (2017)CrossRef
5.
go back to reference Lanzini, A.; Kreutz, T.G.; Martelli, E.; Santarelli, M.: Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture. Int. J. Greenh. Gas Control 26, 169–184 (2014)CrossRef Lanzini, A.; Kreutz, T.G.; Martelli, E.; Santarelli, M.: Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture. Int. J. Greenh. Gas Control 26, 169–184 (2014)CrossRef
6.
go back to reference Duan, W.; Yu, Q.; Liu, J.; Wu, T.; Yang, F.; Qin, Q.: Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag. Energy 111, 859–868 (2016)CrossRef Duan, W.; Yu, Q.; Liu, J.; Wu, T.; Yang, F.; Qin, Q.: Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag. Energy 111, 859–868 (2016)CrossRef
7.
go back to reference Liang, C.; Lyu, Q.; Na, Y.; Wang, X.: Gasification of preheated coal: experiment and thermodynamic equilibrium calculation. J. Energy Inst. 92(4), 1005–1013 (2019)CrossRef Liang, C.; Lyu, Q.; Na, Y.; Wang, X.: Gasification of preheated coal: experiment and thermodynamic equilibrium calculation. J. Energy Inst. 92(4), 1005–1013 (2019)CrossRef
8.
go back to reference Tauqir, W.; Zubair, M.; Nazir, H.: Parametric analysis of a steady state equilibrium-based biomass gasification model for syngas and biochar production and heat generation. Energy Convers. Manag. 199, 111954 (2019)CrossRef Tauqir, W.; Zubair, M.; Nazir, H.: Parametric analysis of a steady state equilibrium-based biomass gasification model for syngas and biochar production and heat generation. Energy Convers. Manag. 199, 111954 (2019)CrossRef
9.
go back to reference Faleh, S.; Khir, T.; Ben Brahim, A.: Energetic performance optimization of a SOFC–GT hybrid power plant. Arab. J. Sci. Eng. 42(4), 1505–1515 (2017)CrossRef Faleh, S.; Khir, T.; Ben Brahim, A.: Energetic performance optimization of a SOFC–GT hybrid power plant. Arab. J. Sci. Eng. 42(4), 1505–1515 (2017)CrossRef
10.
go back to reference Burer, M.; Tanaka, K.; Favrat, D.; Yamada, K.: Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy 28(6), 497–518 (2003)CrossRef Burer, M.; Tanaka, K.; Favrat, D.; Yamada, K.: Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy 28(6), 497–518 (2003)CrossRef
11.
go back to reference Entchev, E.: Residential fuel cell energy systems performance optimization using “soft computing” techniques. J. Power Sources 118(1–2), 212–217 (2003)CrossRef Entchev, E.: Residential fuel cell energy systems performance optimization using “soft computing” techniques. J. Power Sources 118(1–2), 212–217 (2003)CrossRef
12.
go back to reference Yang, S.: Improving a solid oxide fuel cell system through exergy analysis. Int J Exergy 21(3), 95–314 (2016)CrossRef Yang, S.: Improving a solid oxide fuel cell system through exergy analysis. Int J Exergy 21(3), 95–314 (2016)CrossRef
13.
go back to reference Hussain, J.; Ali, R.; Akhtar, M.N.; Jaffery, M.H.; Shakir, I.; Raza, R.: Modeling and simulation of planar SOFC to study the electrochemical properties. Curr. Appl. Phys. 20(5), 660–672 (2020)CrossRef Hussain, J.; Ali, R.; Akhtar, M.N.; Jaffery, M.H.; Shakir, I.; Raza, R.: Modeling and simulation of planar SOFC to study the electrochemical properties. Curr. Appl. Phys. 20(5), 660–672 (2020)CrossRef
14.
go back to reference Grol, E.: Technical assessment of an integrated gasification fuel cell combined cycle with carbon capture. Energy Procedia 1(1), 4307–4313 (2009)CrossRef Grol, E.: Technical assessment of an integrated gasification fuel cell combined cycle with carbon capture. Energy Procedia 1(1), 4307–4313 (2009)CrossRef
15.
go back to reference Thattai, A.T.; Oldenbroek, V.D.W.M.; Schoenmakers, L.; Woudstra, T.; Aravind, P.V.: Towards retrofitting integrated gasification combined cycle (IGCC) power plants with solid oxide fuel cells (SOFC) and CO2 capture–a thermodynamic case study. Appl. Therm. Eng. 114, 170–185 (2017)CrossRef Thattai, A.T.; Oldenbroek, V.D.W.M.; Schoenmakers, L.; Woudstra, T.; Aravind, P.V.: Towards retrofitting integrated gasification combined cycle (IGCC) power plants with solid oxide fuel cells (SOFC) and CO2 capture–a thermodynamic case study. Appl. Therm. Eng. 114, 170–185 (2017)CrossRef
16.
go back to reference Haseli, Y.; Dincer, I.; Naterer, G.F.: Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy. Thermochim. Acta 480(1–2), 1–9 (2008)CrossRef Haseli, Y.; Dincer, I.; Naterer, G.F.: Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy. Thermochim. Acta 480(1–2), 1–9 (2008)CrossRef
17.
go back to reference El-Emam, R.S.; Dincer, I.; Naterer, G.F.: Energy and exergy analyses of an integrated SOFC and coal gasification system. Int. J. Hydrog. Energy 37(2), 1689–1697 (2012)CrossRef El-Emam, R.S.; Dincer, I.; Naterer, G.F.: Energy and exergy analyses of an integrated SOFC and coal gasification system. Int. J. Hydrog. Energy 37(2), 1689–1697 (2012)CrossRef
18.
go back to reference Seidler, S.; Henke, M.; Kallo, J.; Bessler, W.G.; Maier, U.; Friedrich, K.A.: Pressurized solid oxide fuel cells: experimental studies and modelling. J. Power Sources 196(17), 7195–7202 (2011)CrossRef Seidler, S.; Henke, M.; Kallo, J.; Bessler, W.G.; Maier, U.; Friedrich, K.A.: Pressurized solid oxide fuel cells: experimental studies and modelling. J. Power Sources 196(17), 7195–7202 (2011)CrossRef
19.
go back to reference Li, M.; Rao, A.D.; Brouwer, J.; Samuelsen, G.S.: Design of highly efficient coal-based integrated gasification fuel cell power plants. J. Power Sources 195(17), 5707–5718 (2010)CrossRef Li, M.; Rao, A.D.; Brouwer, J.; Samuelsen, G.S.: Design of highly efficient coal-based integrated gasification fuel cell power plants. J. Power Sources 195(17), 5707–5718 (2010)CrossRef
20.
go back to reference Ghosh, S.; De, S.: Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell. Energy 31(2–3), 345–363 (2006)CrossRef Ghosh, S.; De, S.: Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell. Energy 31(2–3), 345–363 (2006)CrossRef
21.
go back to reference Al-Khori, K.; Bicer, Y.; Boulfrad, S.; Koç, M.: Techno-economic and environmental assessment of integrating SOFC with a conventional steam and power system in a natural gas processing plant. Int. J. Hydrog. Energy 44(56), 29604–29617 (2019)CrossRef Al-Khori, K.; Bicer, Y.; Boulfrad, S.; Koç, M.: Techno-economic and environmental assessment of integrating SOFC with a conventional steam and power system in a natural gas processing plant. Int. J. Hydrog. Energy 44(56), 29604–29617 (2019)CrossRef
22.
go back to reference Taufiq, B.N.; Kikuchi, Y.; Ishimoto, T.; Honda, K.; Koyama, M.: Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation. Appl. Energy 147, 486–499 (2015)CrossRef Taufiq, B.N.; Kikuchi, Y.; Ishimoto, T.; Honda, K.; Koyama, M.: Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation. Appl. Energy 147, 486–499 (2015)CrossRef
23.
go back to reference Chen, S.; Lior, N.; Xiang, W.: Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture. Appl. Energy 146, 298–312 (2015)CrossRef Chen, S.; Lior, N.; Xiang, W.: Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture. Appl. Energy 146, 298–312 (2015)CrossRef
24.
go back to reference Cycle- Tempo release 5.0.: Delft University of Technology (2008) Cycle- Tempo release 5.0.: Delft University of Technology (2008)
25.
go back to reference Karmakar, S.; Suresh, M.V.J.J.; Kolar, A.K.: The effect of advanced steam parameter-based coal-fired power plants with CO2 capture on the Indian energy scenario. Int. J. Green Energy 10(10), 1011–1025 (2013)CrossRef Karmakar, S.; Suresh, M.V.J.J.; Kolar, A.K.: The effect of advanced steam parameter-based coal-fired power plants with CO2 capture on the Indian energy scenario. Int. J. Green Energy 10(10), 1011–1025 (2013)CrossRef
27.
go back to reference Shabbar, S.; Janajreh, I.: Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method. Energy Convers. Manag. 65, 755–763 (2013)CrossRef Shabbar, S.; Janajreh, I.: Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method. Energy Convers. Manag. 65, 755–763 (2013)CrossRef
28.
go back to reference Cheddie, D.F.: Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. Int. J. Hydrog. Energy 36(2), 1702–1709 (2011)CrossRef Cheddie, D.F.: Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. Int. J. Hydrog. Energy 36(2), 1702–1709 (2011)CrossRef
29.
go back to reference Taheri, M.H.; Mosaffa, A.H.; Farshi, L.G.: Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle. Energy 125, 162–177 (2017)CrossRef Taheri, M.H.; Mosaffa, A.H.; Farshi, L.G.: Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle. Energy 125, 162–177 (2017)CrossRef
30.
go back to reference Samanta, S.; Ghosh, S.: A thermo-economic analysis of repowering of a 250 MW coal fired power plant through integration of Molten Carbonate Fuel Cell with carbon capture. Int. J. Greenh. Gas Control 51, 48–55 (2016)CrossRef Samanta, S.; Ghosh, S.: A thermo-economic analysis of repowering of a 250 MW coal fired power plant through integration of Molten Carbonate Fuel Cell with carbon capture. Int. J. Greenh. Gas Control 51, 48–55 (2016)CrossRef
31.
go back to reference Kumar, R.; Karmakar, S.: Techno-economic analysis of a 500 MWe supercritical coal-based thermal power plant with solar assisted MEA-based CO2 capture. Int. J. Exergy 36, 398–413 (2021)CrossRef Kumar, R.; Karmakar, S.: Techno-economic analysis of a 500 MWe supercritical coal-based thermal power plant with solar assisted MEA-based CO2 capture. Int. J. Exergy 36, 398–413 (2021)CrossRef
33.
go back to reference Campanari, S.; Mastropasqua, L.; Gazzani, M.; Chiesa, P.; Romano, M.C.: Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture–part A: methodology and reference cases. J. Power Sources 324, 598–614 (2016)CrossRef Campanari, S.; Mastropasqua, L.; Gazzani, M.; Chiesa, P.; Romano, M.C.: Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture–part A: methodology and reference cases. J. Power Sources 324, 598–614 (2016)CrossRef
34.
go back to reference Sarmah, P.; Gogoi, T.K.: Performance comparison of SOFC integrated combined power systems with three different bottoming steam turbine cycles. Energy Convers. Manag. 132, 91–101 (2017)CrossRef Sarmah, P.; Gogoi, T.K.: Performance comparison of SOFC integrated combined power systems with three different bottoming steam turbine cycles. Energy Convers. Manag. 132, 91–101 (2017)CrossRef
35.
go back to reference Suresh, M.V.J.J.; Reddy, K.S.; Kolar, A.K.: 3-E analysis of advanced power plants based on high ash coal. Int. J. Energy Res. 34(8), 716–735 (2010) Suresh, M.V.J.J.; Reddy, K.S.; Kolar, A.K.: 3-E analysis of advanced power plants based on high ash coal. Int. J. Energy Res. 34(8), 716–735 (2010)
36.
go back to reference Giuffrida, A.; Romano, M.C.; Lozza, G.: Thermodynamic analysis of air-blown gasification for IGCC applications. Appl. Energy 88(11), 3949–3958 (2011)CrossRef Giuffrida, A.; Romano, M.C.; Lozza, G.: Thermodynamic analysis of air-blown gasification for IGCC applications. Appl. Energy 88(11), 3949–3958 (2011)CrossRef
37.
go back to reference Hashimoto, T.; Sakamoto, K.O.; Kitagawa, Y.; Hyakutake, Y.O.; Setani, N.O.: Development of IGCC commercial plant with air-blown gasifier. Mitsubishi Heavy Ind. Tech. Rev. 46(2), 1–5 (2009) Hashimoto, T.; Sakamoto, K.O.; Kitagawa, Y.; Hyakutake, Y.O.; Setani, N.O.: Development of IGCC commercial plant with air-blown gasifier. Mitsubishi Heavy Ind. Tech. Rev. 46(2), 1–5 (2009)
38.
go back to reference Singhal, S.C.: Advances in solid oxide fuel cell technology. Solid State Ion. 135(1–4), 305–313 (2000)CrossRef Singhal, S.C.: Advances in solid oxide fuel cell technology. Solid State Ion. 135(1–4), 305–313 (2000)CrossRef
Metadata
Title
Thermodynamic Analysis of a Reconfigured 500-MWe Supercritical Thermal Power Plant by Integrating Solid Oxide Fuel Cell and a Gas Turbine
Authors
A. Pruthvi Deep
Sujit Karmakar
Publication date
25-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 9/2023
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07464-3

Other articles of this Issue 9/2023

Arabian Journal for Science and Engineering 9/2023 Go to the issue

Premium Partners