Skip to main content
Top
Published in: Cellulose 12/2017

27-10-2017 | Original Paper

Thermodynamic effect on interaction between crystalline phases in size-controlled ACC-bacterial nanocellulose and poly(vinyl alcohol)

Authors: Gento Ishikawa, Tetsuo Kondo

Published in: Cellulose | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aqueous counter collision (ACC) method can provide single bacterial nanocellulose ribbons (ACC-BNC) in a desired width, from a pellicle produced by Gluconacetobacter xylinus. Kose et al. (Biomacromolecules, 12:716–720, 2011) reported that the ACC process transformed the major Iα crystalline phase of the native fiber to a stable Iβ phase, without decreasing the overall crystallinity. The current study investigated the variation of the crystalline phases of ACC-BNC, upon interaction with poly(vinyl alcohol) (PVA). ACC-BNC of desired width was mixed with PVA, without any chemical reaction occurring. This resulted in a homogeneous suspension. The equilibrium melting point of PVA in cast nanocomposite films was investigated, as a probe for evaluating the crystalline surface properties of the ACC-BNC. A decrease in the equilibrium melting point of PVA would have indicated attractive interactions between the PVA and ACC-BNC. However, the nature of the ACC-BNC surface in the presence of PVA depended on the ACC-BNC width. Thicker ACC-BNC acted as a nucleating agent for PVA. Thinner ACC-BNC acted as a diluent of PVA. This tendency was opposite to the case for Iβ-dominant ACC-wood nanocellulose. ACC-BNC acting as a nucleating agent was more efficient than ACC-wood nanocellulose. The results suggested that ACC-BNC surfaces, which probably contained I α phases, had different characteristics to those of Iβ-dominant ACC-wood nanocellulose surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRef
go back to reference Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, pp 568–571 Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, pp 568–571
go back to reference Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mat Res Part A 76A(2):431–438CrossRef Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mat Res Part A 76A(2):431–438CrossRef
go back to reference Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum.2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352PubMedPubMedCentralCrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum.2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352PubMedPubMedCentralCrossRef
go back to reference Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of polychlorotrifuluoroethylene. J Res Natl Bur Stand Sect A Phys Chem 66(JAN-F):13–28CrossRef Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of polychlorotrifuluoroethylene. J Res Natl Bur Stand Sect A Phys Chem 66(JAN-F):13–28CrossRef
go back to reference Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30CrossRef Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30CrossRef
go back to reference Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8(6):1973–1978CrossRef Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8(6):1973–1978CrossRef
go back to reference Imken RL, Paul DR, Barlow JW (1976) Transition behavior of poly(vinylidene fluoride)/poly(ethyl methacrylate) blends. Polym Eng Sci 16(9):593–601CrossRef Imken RL, Paul DR, Barlow JW (1976) Transition behavior of poly(vinylidene fluoride)/poly(ethyl methacrylate) blends. Polym Eng Sci 16(9):593–601CrossRef
go back to reference Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719CrossRef Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719CrossRef
go back to reference Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemi Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemi Int Ed 50(24):5438–5466CrossRef
go back to reference Kondo T, Kasai W (2014) Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. J Biosci Bioeng 118(4):482–487PubMedCrossRef Kondo T, Kasai W (2014) Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. J Biosci Bioeng 118(4):482–487PubMedCrossRef
go back to reference Kondo T, Sawatari C, Manley RS, Gray DG (1994) Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27(1):210–215CrossRef Kondo T, Sawatari C, Manley RS, Gray DG (1994) Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27(1):210–215CrossRef
go back to reference Kondo T, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. PANS 99(22):14008–14013CrossRef Kondo T, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. PANS 99(22):14008–14013CrossRef
go back to reference Kondo T, Kasai W, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2012) Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates. J Biosci Bioeng 114(1):113–120PubMedCrossRef Kondo T, Kasai W, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2012) Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates. J Biosci Bioeng 114(1):113–120PubMedCrossRef
go back to reference Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290PubMedCrossRef Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290PubMedCrossRef
go back to reference Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128(2):1200–1205CrossRef Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128(2):1200–1205CrossRef
go back to reference Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromol 12(3):716–720CrossRef Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromol 12(3):716–720CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef
go back to reference Nishio Y, Haratani T, Takahashi T (1989) Cellulose/poly(vinyl alcohol) blends: an estimation of thermodynamic polymer-polymer interaction by melting point depression analysis. Macromolecules 22(5):2547–2549CrossRef Nishio Y, Haratani T, Takahashi T (1989) Cellulose/poly(vinyl alcohol) blends: an estimation of thermodynamic polymer-polymer interaction by melting point depression analysis. Macromolecules 22(5):2547–2549CrossRef
go back to reference Sawatari C, Kondo T (1999) Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules 32(6):1949–1955CrossRef Sawatari C, Kondo T (1999) Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules 32(6):1949–1955CrossRef
go back to reference Scott RL (1949) The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: polymer 1—polymer 2—solvent. J Chem Phys 17(3):279–284CrossRef Scott RL (1949) The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: polymer 1—polymer 2—solvent. J Chem Phys 17(3):279–284CrossRef
go back to reference Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598PubMedCrossRef Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598PubMedCrossRef
go back to reference Tsuboi K, Yokota S, Kondo T (2014) Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nord Pulp Res J 29(1):69–76CrossRef Tsuboi K, Yokota S, Kondo T (2014) Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nord Pulp Res J 29(1):69–76CrossRef
go back to reference Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M (2009) Acceleration mechanism in critical nucleation of polymers by epitaxy of nucleating agent. Polym J 41(3):228–236CrossRef Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M (2009) Acceleration mechanism in critical nucleation of polymers by epitaxy of nucleating agent. Polym J 41(3):228–236CrossRef
go back to reference Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Cur Sci 102(10):1398–1405 Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Cur Sci 102(10):1398–1405
go back to reference Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4(3):221–232CrossRef Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4(3):221–232CrossRef
go back to reference Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3(4):229–242CrossRef Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3(4):229–242CrossRef
go back to reference Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mat Sci 24(9):3141–3145CrossRef Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mat Sci 24(9):3141–3145CrossRef
go back to reference Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRef
Metadata
Title
Thermodynamic effect on interaction between crystalline phases in size-controlled ACC-bacterial nanocellulose and poly(vinyl alcohol)
Authors
Gento Ishikawa
Tetsuo Kondo
Publication date
27-10-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 12/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1532-2

Other articles of this Issue 12/2017

Cellulose 12/2017 Go to the issue