Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

1. Thermodynamic Model and Techniques

Author : Professor Tibor Gasparik

Published in: Phase Diagrams for Geoscientists

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The core thermodynamic framework that made this book possible is the internally consistent thermodynamic model for the system CaO–MgO–Al2O3–SiO2 (CMAS) published in 2000 [56]. The set of the parameters presented in this book was completed by extending this CMAS model to sodium–bearing systems. A thermodynamic model consists of a set of parameters and an equation of state describing the relationship among them. The parameters can be obtained by a direct measurement of the corresponding thermodynamic properties, or derived by fitting phase equilibrium data. Unfortunately, the equation of state used here and other similar equations currently in use are rather simplistic macroscopic approximations of the microscopic properties, so that even if the microscopic properties were known precisely and completely, there is no guarantee that the resulting model would predict the correct phase relations. Because predicting the correct phase relations is the primary purpose of these models to make them suitable for petrologic applications, it is more important to reproduce phase equilibrium data than to achieve an exact match between the parameters and the measurements. To verify whether a model reproduces the observed phase relations, it has to be sufficiently simple to make the calculation of the corresponding phase diagrams possible. In this book such a thermodynamic model was derived using primarily phase equilibrium data, while the measured thermodynamic properties were used mainly as guiding values to be approached by not necessarily matched.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Gasparik, T.: Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib. Miner. Petrol. 87, 87–97 (1984)CrossRef Gasparik, T.: Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib. Miner. Petrol. 87, 87–97 (1984)CrossRef
4.
go back to reference Gasparik, T.: Experimentally determined stability of clinopyroxene + garnet + corundum in the system CaO–MgO–Al2O3–SiO2. Am. Mineral. 69, 1025–1035 (1984) Gasparik, T.: Experimentally determined stability of clinopyroxene + garnet + corundum in the system CaO–MgO–Al2O3–SiO2. Am. Mineral. 69, 1025–1035 (1984)
5.
go back to reference Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO–Al2O3–SiO2. Geochim. Cosmochim. Acta 48, 2537–2545 (1984)CrossRef Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO–Al2O3–SiO2. Geochim. Cosmochim. Acta 48, 2537–2545 (1984)CrossRef
6.
go back to reference Gasparik, T., Newton, R.C.: The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2. Contrib Miner Petrol 85, 186–196 (1984)CrossRef Gasparik, T., Newton, R.C.: The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2. Contrib Miner Petrol 85, 186–196 (1984)CrossRef
8.
go back to reference Gasparik, T.: Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200–1350°C and 15–34 kbar. Geochim. Cosmochim. Acta 49, 865–870 (1985)CrossRef Gasparik, T.: Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200–1350°C and 15–34 kbar. Geochim. Cosmochim. Acta 49, 865–870 (1985)CrossRef
10.
go back to reference Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O–CaO–Al2O3–SiO2. Contrib. Miner. Petrol. 89, 346–357 (1985)CrossRef Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O–CaO–Al2O3–SiO2. Contrib. Miner. Petrol. 89, 346–357 (1985)CrossRef
11.
go back to reference Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of clinopyroxene in the silica saturated system CaO–MgO–Al2O3–SiO2. Am. Mineral. 71, 686–693 (1986) Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of clinopyroxene in the silica saturated system CaO–MgO–Al2O3–SiO2. Am. Mineral. 71, 686–693 (1986)
15.
go back to reference Gasparik, T.: Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Miner. Petrol. 102, 389–405 (1989)CrossRef Gasparik, T.: Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Miner. Petrol. 102, 389–405 (1989)CrossRef
21.
go back to reference Gasparik, T.: Phase relations in the transition zone. J. Geophys. Res. 95, 15751–15769 (1990)CrossRef Gasparik, T.: Phase relations in the transition zone. J. Geophys. Res. 95, 15751–15769 (1990)CrossRef
31.
go back to reference Gasparik, T.: The role of volatiles in the transition zone. J. Geophys. Res. 98, 4287–4299 (1993)CrossRef Gasparik, T.: The role of volatiles in the transition zone. J. Geophys. Res. 98, 4287–4299 (1993)CrossRef
44.
go back to reference Gasparik, T.: Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib. Miner. Petrol. 124, 139–153 (1996)CrossRef Gasparik, T.: Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib. Miner. Petrol. 124, 139–153 (1996)CrossRef
52.
go back to reference Gasparik, T.: A temperature-pressure calibration grid for multianvil experiments based on phase relations in the system CaO–MgO–SiO2. Rev. High. Press. Sci. Technol. 7, 9–11 (1998)CrossRef Gasparik, T.: A temperature-pressure calibration grid for multianvil experiments based on phase relations in the system CaO–MgO–SiO2. Rev. High. Press. Sci. Technol. 7, 9–11 (1998)CrossRef
56.
go back to reference Gasparik, T.: An internally consistent thermodynamic model for the system CaO–MgO–Al2O3–SiO2 derived primarily from phase equilibrium data. J. Geol. 108, 103–119 (2000)CrossRef Gasparik, T.: An internally consistent thermodynamic model for the system CaO–MgO–Al2O3–SiO2 derived primarily from phase equilibrium data. J. Geol. 108, 103–119 (2000)CrossRef
57.
go back to reference Gasparik, T.: Evidence for immiscibility in majorite garnet from experiments at 13–15 GPa. Geochim. Cosmochim. Acta 64, 1641–1650 (2000)CrossRef Gasparik, T.: Evidence for immiscibility in majorite garnet from experiments at 13–15 GPa. Geochim. Cosmochim. Acta 64, 1641–1650 (2000)CrossRef
114.
go back to reference Boyd, F.R., England, J.L.: Effect of pressure on the melting of diopside, CaMgSi2O6, and albite, NaAlSi3O8, in the range up to 50 kilobars. J. Geophys. Res. 68, 311–323 (1963)CrossRef Boyd, F.R., England, J.L.: Effect of pressure on the melting of diopside, CaMgSi2O6, and albite, NaAlSi3O8, in the range up to 50 kilobars. J. Geophys. Res. 68, 311–323 (1963)CrossRef
188.
go back to reference Grover, J.E.: Thermodynamics of pyroxenes. In: Prewitt, C.T. (ed.) Reviews in Mineralogy. Pyroxenes, vol. 1, pp. 341–417. Mineral Soc Am, Washington DC (1980) Grover, J.E.: Thermodynamics of pyroxenes. In: Prewitt, C.T. (ed.) Reviews in Mineralogy. Pyroxenes, vol. 1, pp. 341–417. Mineral Soc Am, Washington DC (1980)
369.
go back to reference Redlich, O., Kister, A.T.: Thermodynamics of nonelectrolyte solutions: algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRef Redlich, O., Kister, A.T.: Thermodynamics of nonelectrolyte solutions: algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRef
Metadata
Title
Thermodynamic Model and Techniques
Author
Professor Tibor Gasparik
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5776-3_1