Skip to main content
Top
Published in: Metallurgist 11-12/2021

05-04-2021

Thermodynamic Modeling of Reduction of Cerium from Slags of CaO–SiO2–Ce2O3–15Al2O3–8MgO by Calcium Carbide Additives

Authors: A. G. Upolovnikova, A. A. Babenko, A. N. Smetannikov

Published in: Metallurgist | Issue 11-12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermodynamic modeling of the reduction of cerium from slags of the CaO–SiO2–Ce2O3 system containing 15% Al2O4 and 8% MgO, with aluminum dissolved in the metal together with calcium carbide additives at temperatures of 1550 and 1650°C was performed using the HSC 8.03 Chemistry software package (Outokumpu) based on the simplex lattice planning method used to minimize Gibbs energy. The results of thermodynamic modeling are presented in the form of composition-property diagrams (equilibrium content of cerium in the metal) for temperatures of 1550 and 1650°C. It is shown that the formation of slags within a basicity range of 2–3 containing 1–7% Ce2O3 provides an equilibrium concentration of cerium in the metal varying from 1 to 7 ppm at a temperature of 1550°C. The displacement of slags in the area of increased basicity (up to 3–5) is accompanied by an increase in the equilibrium concentration of cerium in the metal up to 7–23 ppm with a content of 3–7% Ce2O3 and as a consequence an increase in the efficiency of the process of cerium reduction. At a temperature of 1650°C, the equilibrium concentration of cerium in the metal within the basicity range of 2–3 and having a Ce2O3 content of 1–7% varies from 2 to 12 ppm. The displacement of slags in the area of increased basicity (up to 3–5) is accompanied by an increase in the equilibrium concentration of cerium in the metal to 7–33 ppm with a Ce2O3 content of 3–7%. The positive influence of the temperature factor basicity of slags and the content of cerium oxide on the process of its reduction is qualitatively explained from the standpoint of the formation of the phase composition of the slags of the studied oxide system and the thermodynamics of chemical reactions of reduction of cerium with aluminum dissolved in the metal, as well as with aluminum dissolved in the metal together with calcium carbide additives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ya. G. Gol’dshtein and L. B. Efimova, Modification and Microalloying of Cast Iron and Steel [in Russian], Metallurgiya, Moscow (1986). Ya. G. Gol’dshtein and L. B. Efimova, Modification and Microalloying of Cast Iron and Steel [in Russian], Metallurgiya, Moscow (1986).
2.
go back to reference V. L. Pilyushenko and V. A. Vikhlevshchuk, Scientific and Technological Principles of Steel Microalloying [in Russian] Metallurgiya, Moscow (2000). V. L. Pilyushenko and V. A. Vikhlevshchuk, Scientific and Technological Principles of Steel Microalloying [in Russian] Metallurgiya, Moscow (2000).
3.
go back to reference D. Yu. Petryna, О. L. Kozak, B. R. Shulyar, Yu. D. Petryna, and M. I. Hredil, “Influence of alloying by rare-earth metals on the mechanical properties of 17G1S pipe steel,” Mater. Sci., 48, No. 5, 575–581 (2013).CrossRef D. Yu. Petryna, О. L. Kozak, B. R. Shulyar, Yu. D. Petryna, and M. I. Hredil, “Influence of alloying by rare-earth metals on the mechanical properties of 17G1S pipe steel,” Mater. Sci., 48, No. 5, 575–581 (2013).CrossRef
4.
go back to reference V. D. Makarchenko and M. V. Kindrachuk, “Effect of cerium on the mechanical and corrosion properties of low-alloy pipe steels,” Kompres. Energ. Mashinostr., No. 3, 24–29 (2014). V. D. Makarchenko and M. V. Kindrachuk, “Effect of cerium on the mechanical and corrosion properties of low-alloy pipe steels,” Kompres. Energ. Mashinostr., No. 3, 24–29 (2014).
5.
go back to reference H. Torkamani, Sh. Raygan, C. Garcia-Mateo, J. Rassizadehghani, Y. Palizdar, and D. San-Martin, “Evolution of pearlite microstructure in low-carbon cast microalloyed steel due to the addition of La and Ce,” Metall. Mater. Trans. A, 49А, 4495–4508 (2018).CrossRef H. Torkamani, Sh. Raygan, C. Garcia-Mateo, J. Rassizadehghani, Y. Palizdar, and D. San-Martin, “Evolution of pearlite microstructure in low-carbon cast microalloyed steel due to the addition of La and Ce,” Metall. Mater. Trans. A, 49А, 4495–4508 (2018).CrossRef
6.
go back to reference Y. Xiaohong, L. Hu, C. Guoguang, W. Chengchuan, and W. Bin, “Effect of refining slag containing Ce2O3 on steel cleanliness,” J. Rare Earth., 29, No. 11, 1079–1083 (2011).CrossRef Y. Xiaohong, L. Hu, C. Guoguang, W. Chengchuan, and W. Bin, “Effect of refining slag containing Ce2O3 on steel cleanliness,” J. Rare Earth., 29, No. 11, 1079–1083 (2011).CrossRef
7.
go back to reference C. Wu, G. Cheng, H. Long, and X. Yang, “A thermodynamic model for evaluation of mass action concentrations of Ce2O3-contained slag systems based on the ion and molecule coexistence theory high temp,” Mater. Proc., 32, No. 3, 207–214 (2013). C. Wu, G. Cheng, H. Long, and X. Yang, “A thermodynamic model for evaluation of mass action concentrations of Ce2O3-contained slag systems based on the ion and molecule coexistence theory high temp,” Mater. Proc., 32, No. 3, 207–214 (2013).
8.
go back to reference H. Long, Measurements of Physical Properties of Ce Contained Refining Slags and Their Effects on Steel Cleanliness, Mast. Thes., University of Science and Technology Beijing, 32 (2011). H. Long, Measurements of Physical Properties of Ce Contained Refining Slags and Their Effects on Steel Cleanliness, Mast. Thes., University of Science and Technology Beijing, 32 (2011).
9.
go back to reference M. X. Guo and H. Suito, “Effect of dissolved cerium on austenite grain growth in an Fe-0.20 mass% C-0.02mas%P alloy,” ISIJ Int., 39, No. 11, 1169 (1999).CrossRef M. X. Guo and H. Suito, “Effect of dissolved cerium on austenite grain growth in an Fe-0.20 mass% C-0.02mas%P alloy,” ISIJ Int., 39, No. 11, 1169 (1999).CrossRef
10.
go back to reference S. Ueda, K. Morita, and N. Sano, “Activity of AlO1.5 for the CeO1.5–CaO–AlO1.5 system at 1773 K,” ISIJ Int., 38, No. 12, 1292–1296 (1998).CrossRef S. Ueda, K. Morita, and N. Sano, “Activity of AlO1.5 for the CeO1.5–CaO–AlO1.5 system at 1773 K,” ISIJ Int., 38, No. 12, 1292–1296 (1998).CrossRef
11.
go back to reference C. Wu, G. Cheng, and H. Long, “Effect of Ce2O3 and CaO/Al2O3 on the phase, melting temperature and viscosity of CaO–Al2O3–10 mass.% SiO2 based slags,” High Temp. Mater. Proc., 33, No. 1, 77–84 (2014).CrossRef C. Wu, G. Cheng, and H. Long, “Effect of Ce2O3 and CaO/Al2O3 on the phase, melting temperature and viscosity of CaO–Al2O3–10 mass.% SiO2 based slags,” High Temp. Mater. Proc., 33, No. 1, 77–84 (2014).CrossRef
12.
go back to reference H. Feifei, L. Bo, L. Da, L. Ligang, D. Ting, R. Xuejun, and Y. Qingxiang, “Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism,” J. Rare Earth., 29, No. 6, 609–613 (2011).CrossRef H. Feifei, L. Bo, L. Da, L. Ligang, D. Ting, R. Xuejun, and Y. Qingxiang, “Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism,” J. Rare Earth., 29, No. 6, 609–613 (2011).CrossRef
13.
go back to reference L. J. Wang, Q. Wang, J. M. Li, and K. C. Chou, “Dissolution mechanism of Al2O3 in refining slags containing Ce2O3,” J. Min. Metall. Sect. B., 52, No. 1,B, 35–40 (2016).CrossRef L. J. Wang, Q. Wang, J. M. Li, and K. C. Chou, “Dissolution mechanism of Al2O3 in refining slags containing Ce2O3,” J. Min. Metall. Sect. B., 52, No. 1,B, 35–40 (2016).CrossRef
14.
go back to reference N. M. Anacleto, H.-G. Lee, and P. C. Hayes, “Sulphur partition between CaO–SiO2–Ce2O3 slags and carbon-saturated iron,” ISIJ Int., 33, No. 5, 549–555 (1993).CrossRef N. M. Anacleto, H.-G. Lee, and P. C. Hayes, “Sulphur partition between CaO–SiO2–Ce2O3 slags and carbon-saturated iron,” ISIJ Int., 33, No. 5, 549–555 (1993).CrossRef
15.
go back to reference G. G. Mikhailov, L. A. Makrovets, and L. A. Smirnov, “Thermodynamic modeling of phase equilibria with oxide systems containing REMs. Report 3. Phase diagrams of oxide systems with Ce2O3 and CeO2,” Vestn. YuUrGU, Ser. Metallurgiya, 15, No. 4, 5–14 (2015). G. G. Mikhailov, L. A. Makrovets, and L. A. Smirnov, “Thermodynamic modeling of phase equilibria with oxide systems containing REMs. Report 3. Phase diagrams of oxide systems with Ce2O3 and CeO2,” Vestn. YuUrGU, Ser. Metallurgiya, 15, No. 4, 5–14 (2015).
16.
go back to reference A. A. Babenko, L. A. Smirnov, A. G. Upolovnikova, and O. V. Nechvoglod, “Thermodynamic modeling of cerium reduction from CaO–SiO2–Ce2O3–15%Al2O3–8%MgO slags by aluminum dissolved in metal,” Butlerov. Soobshch., 59, No. 9, 140–145 (2019).CrossRef A. A. Babenko, L. A. Smirnov, A. G. Upolovnikova, and O. V. Nechvoglod, “Thermodynamic modeling of cerium reduction from CaO–SiO2–Ce2O3–15%Al2O3–8%MgO slags by aluminum dissolved in metal,” Butlerov. Soobshch., 59, No. 9, 140–145 (2019).CrossRef
17.
go back to reference A. A. Babenko, L. A. Smirnov, A. G. Upolovnikova, and L. Yu. Mikhailova, “Diagrams of equilibrium cerium content in metal under CaO–SiO2–Ce2O3–15% Al2O3–8%MgO slag,” Butlerov. Soobshch., 60, No. 10, 140–145 (2019).CrossRef A. A. Babenko, L. A. Smirnov, A. G. Upolovnikova, and L. Yu. Mikhailova, “Diagrams of equilibrium cerium content in metal under CaO–SiO2–Ce2O3–15% Al2O3–8%MgO slag,” Butlerov. Soobshch., 60, No. 10, 140–145 (2019).CrossRef
18.
go back to reference G. I. Kotel’nikov, K. A. Zubarev, D. A. Movenko, A. V. Pavlov, and A. E. Semin, “Curve of calcium deoxidation of iron,” Elektrometallurgiya, No. 5, 10–18 (2016). G. I. Kotel’nikov, K. A. Zubarev, D. A. Movenko, A. V. Pavlov, and A. E. Semin, “Curve of calcium deoxidation of iron,” Elektrometallurgiya, No. 5, 10–18 (2016).
19.
go back to reference A. A. Svyazhin, É. Krushke, and A. G. Svyazhin, “Using calcium carbide in low-carbon steel smelting,” Metallurg, No. 11, 43–45 (2004). A. A. Svyazhin, É. Krushke, and A. G. Svyazhin, “Using calcium carbide in low-carbon steel smelting,” Metallurg, No. 11, 43–45 (2004).
20.
go back to reference A. N. Khromatin, S. N. Neretin, Yu. V. Glavat-skikh, and A. V. Pavlov, Deoxidizer for Steel, Russian Patent No. RU2638470; appl. Nov 10, 2016; Publ. Dec 13, 2017; Bull. No. 35. A. N. Khromatin, S. N. Neretin, Yu. V. Glavat-skikh, and A. V. Pavlov, Deoxidizer for Steel, Russian Patent No. RU2638470; appl. Nov 10, 2016; Publ. Dec 13, 2017; Bull. No. 35.
21.
go back to reference A. V. Pashchenko, V. V. Akulov, T. V. Goryainova, and S. A. Sbitnev, “Use of calcium carbide as a method of secondary steelmaking,” Met. Lit. Ukr., No. 6, 12–14 (2010). A. V. Pashchenko, V. V. Akulov, T. V. Goryainova, and S. A. Sbitnev, “Use of calcium carbide as a method of secondary steelmaking,” Met. Lit. Ukr., No. 6, 12–14 (2010).
22.
go back to reference A. A. Babenko, V. I. Zhuchkov, L. I. Leont’ev, and A. G. Upolovnikova, “Equilibrium boron distribution between the metal of Fe–C–Si–Al system and boron-containing slag,” Izv. VUZov, Chern. Metallurg., 60, No. 9, 752–758 (2017). A. A. Babenko, V. I. Zhuchkov, L. I. Leont’ev, and A. G. Upolovnikova, “Equilibrium boron distribution between the metal of Fe–C–Si–Al system and boron-containing slag,” Izv. VUZov, Chern. Metallurg., 60, No. 9, 752–758 (2017).
23.
go back to reference V. A. Kim, É. I. Nikolai, A. A. Akberdin, and I. S. Kulikov, Experimental Design in the Study of Physicochemical Properties of Metallurgical Slags [in Russian], guidance manual, Nauka, Alma-Ata (1989). V. A. Kim, É. I. Nikolai, A. A. Akberdin, and I. S. Kulikov, Experimental Design in the Study of Physicochemical Properties of Metallurgical Slags [in Russian], guidance manual, Nauka, Alma-Ata (1989).
Metadata
Title
Thermodynamic Modeling of Reduction of Cerium from Slags of CaO–SiO2–Ce2O3–15Al2O3–8MgO by Calcium Carbide Additives
Authors
A. G. Upolovnikova
A. A. Babenko
A. N. Smetannikov
Publication date
05-04-2021
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01110-3

Other articles of this Issue 11-12/2021

Metallurgist 11-12/2021 Go to the issue

Premium Partners