Skip to main content
Top
Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Thermodynamical Analysis of the Thermal Stability of Zr–Ti–Ni–Cu–Be and Pd–Ni–Cu–P BMGs

Authors: Ailong Zhang, Changsheng Li, Lei Ma, Shenghui Wang, Jingping Zhang

Published in: Physics of Metals and Metallography | Issue 14/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermal stability of Zr–Ti–Ni–Cu–Be and Pd–Ni–Cu–P multicomponent bulk metallic glasses (BMGs) has been evaluated by their Gibbs free energy of formation, ∆Ga. We found that the tight bonding solute-centred clusters (in which a solute atom is surrounded by many solvent atoms in the first coordination shell with strong solute-solvent interaction), and chemical short-range orders (chemical SRO) have a much more important effect on the thermal stability of multicomponent BMGs, than other clusters and short-range orders. The quasi-linear correlation between crystallization temperature, Tx, and ∆Ga is only valid for multicomponent BMGs with similar chemical SRO, in a narrow composition region. This study could be of importance in understanding the thermal stability and the underlying mechanism of crystallization of multicomponent BMGs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Shao, “Thermodynamic and kinetic aspects of intermetallic amorphous alloys,” Intermetallics 11, 313–324 (2003).CrossRef G. Shao, “Thermodynamic and kinetic aspects of intermetallic amorphous alloys,” Intermetallics 11, 313–324 (2003).CrossRef
2.
go back to reference G. Shao, B. Lu, Y. Q. Liu, and P. Tsakiropoulos, “Glass forming ability of multi-component metallic systems,” Intermetallics 13, 409–414 (2005).CrossRef G. Shao, B. Lu, Y. Q. Liu, and P. Tsakiropoulos, “Glass forming ability of multi-component metallic systems,” Intermetallics 13, 409–414 (2005).CrossRef
3.
go back to reference K. H. J. Buschow and N. M. Beekman, “Thermal stability and electronic properties of amorphous Zr–Co and Zr–Ni alloys,” Phys. Rev. B 19, 3843–3849 (1979).CrossRef K. H. J. Buschow and N. M. Beekman, “Thermal stability and electronic properties of amorphous Zr–Co and Zr–Ni alloys,” Phys. Rev. B 19, 3843–3849 (1979).CrossRef
4.
go back to reference X. Ji and Y. Pan, “Predicting alloy compositions of bulk metallic glasses with high glass-forming ability,” Mater. Sci. Eng., A 485, 154–159 (2008).CrossRef X. Ji and Y. Pan, “Predicting alloy compositions of bulk metallic glasses with high glass-forming ability,” Mater. Sci. Eng., A 485, 154–159 (2008).CrossRef
5.
go back to reference M. Xia, S. Zhang, J. Li, and C. Ma, “Thermal stability and its prediction of bulk metallic glass systems,” Appl. Phys. Lett. 88, 261913 (2006).CrossRef M. Xia, S. Zhang, J. Li, and C. Ma, “Thermal stability and its prediction of bulk metallic glass systems,” Appl. Phys. Lett. 88, 261913 (2006).CrossRef
6.
go back to reference S. S. Fang, X. S. Xiao, L. Xia, Q. Wang, W. H. Li, and Y. D. Dong, “Effects of bond parameters on the widths of supercooled liquid regions of ferrous BMGs,” Intermetallics 12, 1069–1072 (2004).CrossRef S. S. Fang, X. S. Xiao, L. Xia, Q. Wang, W. H. Li, and Y. D. Dong, “Effects of bond parameters on the widths of supercooled liquid regions of ferrous BMGs,” Intermetallics 12, 1069–1072 (2004).CrossRef
7.
go back to reference W. Y. Liu, H. F. Zhang, A. M. Wang, H. Li, and Z. Q. Hu, “New criteria of glass forming ability, thermal stability and characteristic temperatures for various bulk metallic glass systems,” Mater. Sci. Eng., A 459, 196–203 (2007).CrossRef W. Y. Liu, H. F. Zhang, A. M. Wang, H. Li, and Z. Q. Hu, “New criteria of glass forming ability, thermal stability and characteristic temperatures for various bulk metallic glass systems,” Mater. Sci. Eng., A 459, 196–203 (2007).CrossRef
8.
go back to reference A. Takeuchi and A. Inoue, “Calculations of crystallization temperature of multicomponent metallic glasses,” Mater. Trans. 43, 2275–2284 (2002).CrossRef A. Takeuchi and A. Inoue, “Calculations of crystallization temperature of multicomponent metallic glasses,” Mater. Trans. 43, 2275–2284 (2002).CrossRef
9.
go back to reference Z. Zhang, X. Z. Xiong, W. Zhou, X. Lin, A. Inoue, and J. F. Li, “Glass forming ability and crystallization behavior of Al–Ni–RE metallic glasses,” Intermetallics 42, 23–31 (2013).CrossRef Z. Zhang, X. Z. Xiong, W. Zhou, X. Lin, A. Inoue, and J. F. Li, “Glass forming ability and crystallization behavior of Al–Ni–RE metallic glasses,” Intermetallics 42, 23–31 (2013).CrossRef
10.
go back to reference S. V. Terekhov, “Single- and multistage crystallization of amorphous alloys,” Phys. Met. Metallogr. 121, 664–669 (2020).CrossRef S. V. Terekhov, “Single- and multistage crystallization of amorphous alloys,” Phys. Met. Metallogr. 121, 664–669 (2020).CrossRef
11.
go back to reference A. Zhang, D. Chen, and Z. Chen, “Thermodynamic analysis of Gd–Ni(Co)–Al bulk metallic glasses,” Philos. Mag. Lett. 89, 59–65 (2009).CrossRef A. Zhang, D. Chen, and Z. Chen, “Thermodynamic analysis of Gd–Ni(Co)–Al bulk metallic glasses,” Philos. Mag. Lett. 89, 59–65 (2009).CrossRef
12.
go back to reference A. Zhang, D. Chen, and Z. Chen, “Predicting the thermal stability of RE-based bulk metallic glasses,” Intermetallics 18, 74–76 (2010).CrossRef A. Zhang, D. Chen, and Z. Chen, “Predicting the thermal stability of RE-based bulk metallic glasses,” Intermetallics 18, 74–76 (2010).CrossRef
13.
go back to reference A. Zhang, D. Chen, and Z. Chen, “Effect of Cu/Zr content ratio on the thermal stability of Cu–Zr-rich Cu–Zr–Al BMGs,” Philos. Mag. Lett. 93, 283–291 (2013).CrossRef A. Zhang, D. Chen, and Z. Chen, “Effect of Cu/Zr content ratio on the thermal stability of Cu–Zr-rich Cu–Zr–Al BMGs,” Philos. Mag. Lett. 93, 283–291 (2013).CrossRef
14.
go back to reference A. Zhang, D. Chen, Z. Chen, Y. Long, Y. Li, S. Wang, L. Ma, and J. Zhang, “Effect of Al–Zr clusters on the thermal stability of Cu–Zr-rich Cu–Zr-Al bulk metallic glasses,” Philos. Mag. Lett. 97, 393–398 (2017).CrossRef A. Zhang, D. Chen, Z. Chen, Y. Long, Y. Li, S. Wang, L. Ma, and J. Zhang, “Effect of Al–Zr clusters on the thermal stability of Cu–Zr-rich Cu–Zr-Al bulk metallic glasses,” Philos. Mag. Lett. 97, 393–398 (2017).CrossRef
15.
go back to reference A. Zhang, D. Chen, Z. Chen, Y. Long, Y. Li, S. Wang, L. Ma, and J. Zhang, “Effect of chemical bonding on the thermal stability of Cu–Zr-rich Cu–Zr–Al bulk metallic glasses,” Phys. Metals. Metallogr. 120, 667–671 (2019).CrossRef A. Zhang, D. Chen, Z. Chen, Y. Long, Y. Li, S. Wang, L. Ma, and J. Zhang, “Effect of chemical bonding on the thermal stability of Cu–Zr-rich Cu–Zr–Al bulk metallic glasses,” Phys. Metals. Metallogr. 120, 667–671 (2019).CrossRef
16.
go back to reference Q. Dong, Y. J. Pan, J. Tan, X. M. Qin, C. J. Li, P. Gao, Z. X. Feng, M. Calin, and J. Eckert, “A comparative study of glass-forming ability, crystallization kinetics and mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses,” J. Alloys Compd. 785, 422–428 (2019).CrossRef Q. Dong, Y. J. Pan, J. Tan, X. M. Qin, C. J. Li, P. Gao, Z. X. Feng, M. Calin, and J. Eckert, “A comparative study of glass-forming ability, crystallization kinetics and mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses,” J. Alloys Compd. 785, 422–428 (2019).CrossRef
17.
go back to reference C. Rodríguez, D. A. Barbiric, M. E. Pepe, J. A. Kovacs, J. A. Alonso, and R. Hojvat de Tendler, “Metastable phase stability in the ternary Zr–Fe–Cr system,” Intermetallics 10, 205–216 (2002).CrossRef C. Rodríguez, D. A. Barbiric, M. E. Pepe, J. A. Kovacs, J. A. Alonso, and R. Hojvat de Tendler, “Metastable phase stability in the ternary Zr–Fe–Cr system,” Intermetallics 10, 205–216 (2002).CrossRef
18.
go back to reference R. Hojvat de Tendler, M. R. Soriano, M. E. Pepe, J. A. Kovacs, E. E. Vicente, and J. A. Alonso, “Calculation of metastable free-energy diagrams and glass formation in the Mg–Cu–Y alloy and its boundary binaries using the Miedema model,” Intermetallics 14, 297–307 (2006).CrossRef R. Hojvat de Tendler, M. R. Soriano, M. E. Pepe, J. A. Kovacs, E. E. Vicente, and J. A. Alonso, “Calculation of metastable free-energy diagrams and glass formation in the Mg–Cu–Y alloy and its boundary binaries using the Miedema model,” Intermetallics 14, 297–307 (2006).CrossRef
19.
go back to reference A. Takeuchi and A. Inoue, “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys,” Mater. Trans. 41, 1372–1378 (2000).CrossRef A. Takeuchi and A. Inoue, “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys,” Mater. Trans. 41, 1372–1378 (2000).CrossRef
20.
go back to reference J. M. López, J. A. Alonso, and L. J. Gallego, “Determination of the glass-forming concentration range in binary alloys from a semiemperical theory: application to Zr-based alloys,” Phys. Rev. B 36, 3716–3722 (1987).CrossRef J. M. López, J. A. Alonso, and L. J. Gallego, “Determination of the glass-forming concentration range in binary alloys from a semiemperical theory: application to Zr-based alloys,” Phys. Rev. B 36, 3716–3722 (1987).CrossRef
21.
go back to reference A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005).CrossRef A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005).CrossRef
22.
go back to reference F. Sietz and D. Turnbull, Solid States Physics (Academic, New York, 1964). F. Sietz and D. Turnbull, Solid States Physics (Academic, New York, 1964).
23.
go back to reference X. Cui, Q. D. Zhang, X. Y. Li, and F. Q. Zu, “On crystallization behavior and thermal stability of Cu64Zr36 metallic glass by controlling the melt temperature,” J. Non-Cryst. Solids 452, 336–341 (2016).CrossRef X. Cui, Q. D. Zhang, X. Y. Li, and F. Q. Zu, “On crystallization behavior and thermal stability of Cu64Zr36 metallic glass by controlling the melt temperature,” J. Non-Cryst. Solids 452, 336–341 (2016).CrossRef
24.
go back to reference Z. P. Lu, C. T. Liu, and Y. D. Dong, “Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses,” J. Non-Cryst. Solids 341, 93–100 (2004).CrossRef Z. P. Lu, C. T. Liu, and Y. D. Dong, “Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses,” J. Non-Cryst. Solids 341, 93–100 (2004).CrossRef
25.
go back to reference N. Nishiyama and A. Inoue, “Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd–Cu–Ni–P alloys,” Mater. Trans. 43, 1913–1917 (2002).CrossRef N. Nishiyama and A. Inoue, “Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd–Cu–Ni–P alloys,” Mater. Trans. 43, 1913–1917 (2002).CrossRef
26.
go back to reference Y. Q. Cheng and E. Ma, “Atomic-level structure and structure-property relationship in metallic glasses,” Prog. Mater. Sci. 56, 379–473 (2011).CrossRef Y. Q. Cheng and E. Ma, “Atomic-level structure and structure-property relationship in metallic glasses,” Prog. Mater. Sci. 56, 379–473 (2011).CrossRef
27.
go back to reference D. B. Miracle, “The efficient cluster packing model–An atomic structural model for metallic glasses,” Acta. Mater. 54, 4317–4336 (2006).CrossRef D. B. Miracle, “The efficient cluster packing model–An atomic structural model for metallic glasses,” Acta. Mater. 54, 4317–4336 (2006).CrossRef
28.
go back to reference D. B. Miracle, “A structural model for metallic glasses,” Nat. Mater. 3, 697–702 (2004).CrossRef D. B. Miracle, “A structural model for metallic glasses,” Nat. Mater. 3, 697–702 (2004).CrossRef
29.
go back to reference D. B. Miracle, W. S. Sanders, and O. N. Senkov, “The influence of efficient atomic packing on the constitution of metallic glasses,” Philos. Mag. 83, 2409–2428 (2003).CrossRef D. B. Miracle, W. S. Sanders, and O. N. Senkov, “The influence of efficient atomic packing on the constitution of metallic glasses,” Philos. Mag. 83, 2409–2428 (2003).CrossRef
30.
go back to reference A. Zhang, D. Chen, and Z. Chen, “Bulk metallic glass-forming region of Cu–Zr binary and Cu–Zr-based multicomponent alloy systems,” J. Alloys Compd. 477, 432–435 (2009).CrossRef A. Zhang, D. Chen, and Z. Chen, “Bulk metallic glass-forming region of Cu–Zr binary and Cu–Zr-based multicomponent alloy systems,” J. Alloys Compd. 477, 432–435 (2009).CrossRef
31.
go back to reference A. Zhang, D. Chen, and Z. Chen, “Predicting the eutectic compositions of four multicomponent alloy systems by a simple approach,” J. Alloys Compd. 509, 648–650 (2011).CrossRef A. Zhang, D. Chen, and Z. Chen, “Predicting the eutectic compositions of four multicomponent alloy systems by a simple approach,” J. Alloys Compd. 509, 648–650 (2011).CrossRef
32.
go back to reference G. Chen, X. Hui, S. Fan, H. Kou, and K. Yao, “Concept of chemical short range order domain and the glass forming ability in multicomponent liquid,” Intermetallics 10, 1221–1232 (2002).CrossRef G. Chen, X. Hui, S. Fan, H. Kou, and K. Yao, “Concept of chemical short range order domain and the glass forming ability in multicomponent liquid,” Intermetallics 10, 1221–1232 (2002).CrossRef
33.
go back to reference Q. Wang, C. T. Liu, Y. Yang, Y. D. Dong, and J. Lu, “Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass,” Phys. Rev. Lett. 106, 215505 (2011).CrossRef Q. Wang, C. T. Liu, Y. Yang, Y. D. Dong, and J. Lu, “Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass,” Phys. Rev. Lett. 106, 215505 (2011).CrossRef
34.
go back to reference Q. Wang, C. T. Liu, Y. Yang, J. B. Liu, Y. D. Dong, and J. Lu, “The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu–Zr based bulk metallic glass with minor element additions,” Sci. Rep. 4, 4648 (2015).CrossRef Q. Wang, C. T. Liu, Y. Yang, J. B. Liu, Y. D. Dong, and J. Lu, “The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu–Zr based bulk metallic glass with minor element additions,” Sci. Rep. 4, 4648 (2015).CrossRef
35.
go back to reference Y. Q. Cheng, E. Ma, and H. W. Sheng, “Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids,” Appl. Phys. Lett. 93, 111913 (2008).CrossRef Y. Q. Cheng, E. Ma, and H. W. Sheng, “Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids,” Appl. Phys. Lett. 93, 111913 (2008).CrossRef
36.
go back to reference S. Pauly, J. Das, N. Mattern, D. Kim and J. Eckert, “Phase formation and thermal stability in Cu–Zr–Ti(Al) metallic glasses,” Intermetallics 17, 453–462 (2009).CrossRef S. Pauly, J. Das, N. Mattern, D. Kim and J. Eckert, “Phase formation and thermal stability in Cu–Zr–Ti(Al) metallic glasses,” Intermetallics 17, 453–462 (2009).CrossRef
37.
go back to reference A. Inoue and C. Fan, “High-strength bulk nanocrystalline alloys containing compound and amorphous phases,” Nanostruct. Mater. 12, 741–749 (1999).CrossRef A. Inoue and C. Fan, “High-strength bulk nanocrystalline alloys containing compound and amorphous phases,” Nanostruct. Mater. 12, 741–749 (1999).CrossRef
38.
go back to reference T. Egami, W. Dmowski, Y. He, and R. B. Schwarz, “Structural of bulk amorphous Pd–Ni–P alloys determined by synchrotron radiation,” Metall. Mater. Trans. A 29, 1805–1809 (1998).CrossRef T. Egami, W. Dmowski, Y. He, and R. B. Schwarz, “Structural of bulk amorphous Pd–Ni–P alloys determined by synchrotron radiation,” Metall. Mater. Trans. A 29, 1805–1809 (1998).CrossRef
Metadata
Title
Thermodynamical Analysis of the Thermal Stability of Zr–Ti–Ni–Cu–Be and Pd–Ni–Cu–P BMGs
Authors
Ailong Zhang
Changsheng Li
Lei Ma
Shenghui Wang
Jingping Zhang
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140192

Other articles of this Issue 14/2021

Physics of Metals and Metallography 14/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

On the Prediction of Stacking Fault Energy on Medium MN Steels