Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Thermodynamical Aspects of Electrochemical Reactions

Author : Dietrich Hebecker

Published in: Springer Handbook of Electrochemical Energy

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The beginning of the transition from fossil fuels to renewable resources is associated with a change in energy conversion technologies and with a growing importance of electricity (Sect. 3.2). The application of electrochemical processes for the use and generation of electricity attains a new position in the energy conversion chain. Electrochemical reactions are associated with heat and electric power (work) exchange and are therefore thermodynamically complicated processes. Chemical and technical thermodynamics are important instruments for the understanding, classification and development of efficient electrochemical reactors and systems. As will be explained in this chapter, the analysis of electrochemical reactions on the basis of the Gibbs–Helmholtz equation allows for the definition of an equivalent temperature, which characterizes the energetic quality of the reaction under equilibrium conditions. The equivalent temperature is the ratio of the molar basic reaction enthalpy and the molar basic reaction entropy. The application of the exergy concept permits the determination of the irreversibilities and of the energetic quality of the exchanged heat as well as of all reaction educts and products (Sect. 3.2). Electrochemical reactions are associated with energy exchange at least at three temperature levels: heat at reaction temperature, work with a normalized exergy of unity, and the chemical conversion itself at its equivalent temperature. Hence, electrochemical reactions can be energy transformations in the sense of thermodynamical cycles, which is of high technological relevance. In addition, each educt and product represents a temperature level or, more precisely, its own normalized exergy. Thus, it is also possible to regard energy transformation processes at the level of substances. Open and closed electrochemical cycles will be considered, evaluated on the basis of their thermodynamical characteristics and compared with conventional processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference J. Newman, K.E. Thomas-Alyea: Electrochemical Systems (Wiley, New York 2004) J. Newman, K.E. Thomas-Alyea: Electrochemical Systems (Wiley, New York 2004)
[2]
go back to reference F. Goodridge, K. Scott: Electrochemical Process Engineering: A Guide to the Design of Electrolytic Plant (Plenum, New York 1995)CrossRef F. Goodridge, K. Scott: Electrochemical Process Engineering: A Guide to the Design of Electrolytic Plant (Plenum, New York 1995)CrossRef
[3]
go back to reference G.G. Trost, V. Edwards, J. Newman: Electrochemical Reaction Engineering, Chemical Reaction and Reactor Engineering (Marcel Dekker, New York 1987) G.G. Trost, V. Edwards, J. Newman: Electrochemical Reaction Engineering, Chemical Reaction and Reactor Engineering (Marcel Dekker, New York 1987)
[4]
go back to reference S.I. Sander: Chemical, Biochemical and Engineering Thermodynamics (Wiley, New York 2006) S.I. Sander: Chemical, Biochemical and Engineering Thermodynamics (Wiley, New York 2006)
[5]
go back to reference J.M. Smith, H.C. Van Ness, M.M. Abbott: Introduction to Chemical Engineering Thermodynamics (McGraw-Hill, New York 2005) J.M. Smith, H.C. Van Ness, M.M. Abbott: Introduction to Chemical Engineering Thermodynamics (McGraw-Hill, New York 2005)
[6]
go back to reference M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey: Fundamentals of Engineering Thermodynamics (Wiley, New York 2010) M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey: Fundamentals of Engineering Thermodynamics (Wiley, New York 2010)
[7]
go back to reference V.S. Bagotsky: Fundamentals of Electrochemistry (Wiley, New York 2006) V.S. Bagotsky: Fundamentals of Electrochemistry (Wiley, New York 2006)
[8]
go back to reference J. Szargut, D.R. Morris, F.R. Steward: Exergy Analysis of Thermal, Chemical and Metallurgical Processes (Hemisphere, New York 1988) J. Szargut, D.R. Morris, F.R. Steward: Exergy Analysis of Thermal, Chemical and Metallurgical Processes (Hemisphere, New York 1988)
[9]
go back to reference J. Szargut: Exergy Analysis: Technical and Ecological Applications (Wittpress, Southampton 2005) J. Szargut: Exergy Analysis: Technical and Ecological Applications (Wittpress, Southampton 2005)
[10]
go back to reference A. Bejan: Advanced Engineering Thermodynamics (Wiley, New York 1990) A. Bejan: Advanced Engineering Thermodynamics (Wiley, New York 1990)
[11]
go back to reference V.M. Brodyansky: The Efficiency of Industrial Process (Elsevier, Amsterdam 1994) V.M. Brodyansky: The Efficiency of Industrial Process (Elsevier, Amsterdam 1994)
[12]
go back to reference N. Sato: Chemical Energy and Exergy (Elsevier Science, Amsterdam 2004) N. Sato: Chemical Energy and Exergy (Elsevier Science, Amsterdam 2004)
[13]
go back to reference I. Dincer, M.A. Rosen: Exergy (Elsevier, Amsterdam 2012) I. Dincer, M.A. Rosen: Exergy (Elsevier, Amsterdam 2012)
[14]
go back to reference G. Hradetzky, D.A. Lempe: MerseburgDataBank MDB for Physico-Chemical Data of Pure Compounds. Version 6.4.2. (1992-2008) G. Hradetzky, D.A. Lempe: MerseburgDataBank MDB for Physico-Chemical Data of Pure Compounds. Version 6.4.2. (1992-2008)
[15]
go back to reference A.J. Bard, L.R. Faulkner: Electrochemical Methods, Fundamentals and Applications (Wiley, New York 2001) A.J. Bard, L.R. Faulkner: Electrochemical Methods, Fundamentals and Applications (Wiley, New York 2001)
[16]
go back to reference W. Vielstich, A. Lamm, H. Gasteiger: Handbook of Fuel Cells (Wiley, Chichester 2003) W. Vielstich, A. Lamm, H. Gasteiger: Handbook of Fuel Cells (Wiley, Chichester 2003)
[17]
go back to reference T. Schulz, S. Zhou: Sundmacher: Current status of and recent developments in the direct methanol fuel cell, Chem. Eng. Technol. 24, 1223–1233 (2001)CrossRef T. Schulz, S. Zhou: Sundmacher: Current status of and recent developments in the direct methanol fuel cell, Chem. Eng. Technol. 24, 1223–1233 (2001)CrossRef
[18]
go back to reference H. Wendt, G. Kreysa: Electrochemical Engineering (Springer, Berlin, Heidelberg 1999)CrossRef H. Wendt, G. Kreysa: Electrochemical Engineering (Springer, Berlin, Heidelberg 1999)CrossRef
[19]
go back to reference G. Alefeld, R. Rademacher: Heat Conversion Systems (CRC, Boca Raton 1994) G. Alefeld, R. Rademacher: Heat Conversion Systems (CRC, Boca Raton 1994)
[20]
go back to reference R.D.H. Hoyle, P.H. Clarke: Thermodynamic Cycles and Processes (Longman, New York 1973) R.D.H. Hoyle, P.H. Clarke: Thermodynamic Cycles and Processes (Longman, New York 1973)
[21]
go back to reference D. Hebecker, P. Bittrich: Energy and materials conversion with the help of regeneration and energy transformation, Int. J. Therm. Sci. 40, 316–328 (2001)CrossRef D. Hebecker, P. Bittrich: Energy and materials conversion with the help of regeneration and energy transformation, Int. J. Therm. Sci. 40, 316–328 (2001)CrossRef
[22]
go back to reference D. Hebecker, P. Bittrich: Classification and evaluation of heat transformation processes, Int. J. Therm. Sci. 38, 465–474 (1999)CrossRef D. Hebecker, P. Bittrich: Classification and evaluation of heat transformation processes, Int. J. Therm. Sci. 38, 465–474 (1999)CrossRef
[23]
go back to reference N. Monnerie, M. Schmitz, M. Roeb, D. Quantius, D. Graf, C. Sattler, D. de Lorenzo: Potential of hybridisation of the thermochemical hybrid-sulphur cycle for the production of hydrogen by using nuclear and solar energy in the same plant, Int. J. Nucl. Hydrogen Prod. Appl. 2(3), 178–201 (2011) N. Monnerie, M. Schmitz, M. Roeb, D. Quantius, D. Graf, C. Sattler, D. de Lorenzo: Potential of hybridisation of the thermochemical hybrid-sulphur cycle for the production of hydrogen by using nuclear and solar energy in the same plant, Int. J. Nucl. Hydrogen Prod. Appl. 2(3), 178–201 (2011)
[24]
go back to reference M. Carmo, D.L. Fritz, J. Mergel, D. Stolten: A comprehensive review on PEM water electrolysis, Intern. J. Hydrogen Energy 38, 4901–4934 (2013)CrossRef M. Carmo, D.L. Fritz, J. Mergel, D. Stolten: A comprehensive review on PEM water electrolysis, Intern. J. Hydrogen Energy 38, 4901–4934 (2013)CrossRef
[25]
go back to reference K. Kordesch, G. Simader: Fuel Cells and Their Application (VCH, Weinheim 1996)CrossRef K. Kordesch, G. Simader: Fuel Cells and Their Application (VCH, Weinheim 1996)CrossRef
Metadata
Title
Thermodynamical Aspects of Electrochemical Reactions
Author
Dietrich Hebecker
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_3