Skip to main content
Top
Published in: Acta Mechanica 3/2020

11-12-2019 | Original Paper

Thermoelastic responses of a finite rod due to nonlocal heat conduction

Author: Nantu Sarkar

Published in: Acta Mechanica | Issue 3/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based upon the Lord and Shulman theory of thermoelasticity, the new governing equations of thermoelasticity with nonlocal heat conduction are formulated. The above model is then employed to study the transient responses of a thermoelastic rod of finite length when subjected to a moving heat source. Both ends of the rod are assumed to be fixed and thermally insulated. The Laplace transform technique is used to obtain the analytical solutions for the field variables such as temperature, displacement, and stress. The inverse Laplace transform based on the Zakian algorithm is numerically implemented to obtain the solutions of the above physical variables in the space–time domain. Specific attention is paid to the study of the effect of the thermal nonlocal parameter on the distributions of the field variables and the speed of the moving heat source.
Literature
1.
go back to reference Majumdar, A., Fushinobu, K., Hijikata, K.: Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. J. Appl. Phys. 77, 6686–6694 (1995)CrossRef Majumdar, A., Fushinobu, K., Hijikata, K.: Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. J. Appl. Phys. 77, 6686–6694 (1995)CrossRef
2.
go back to reference Tzou, D.Y.: Macro to Micro-scale Heat Transfer: The Lagging Behaviour. Taylor and Francis, Abingdon, UK (1997) Tzou, D.Y.: Macro to Micro-scale Heat Transfer: The Lagging Behaviour. Taylor and Francis, Abingdon, UK (1997)
3.
go back to reference Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)CrossRef Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)CrossRef
4.
go back to reference Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)CrossRef Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)CrossRef
5.
go back to reference Koechlin, F., Bonin, B.: Parametrisation of the Niobium thermal conductivity in the superconducting state. In: Bonin, B. (ed.) Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France, New York, Gordon and Breach, pp. 665–669 (1996) Koechlin, F., Bonin, B.: Parametrisation of the Niobium thermal conductivity in the superconducting state. In: Bonin, B. (ed.) Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France, New York, Gordon and Breach, pp. 665–669 (1996)
6.
go back to reference Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann–Franz law. Phys. Rev. B 82, 075418 (2010)CrossRef Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann–Franz law. Phys. Rev. B 82, 075418 (2010)CrossRef
7.
go back to reference Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98, 074306 (2005)CrossRef Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98, 074306 (2005)CrossRef
8.
go back to reference Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATH Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATH
9.
go back to reference Yu, Y.J., Tian, X.G., Liu, R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech. A Solids 51, 96–106 (2015)MathSciNetCrossRef Yu, Y.J., Tian, X.G., Liu, R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech. A Solids 51, 96–106 (2015)MathSciNetCrossRef
10.
go back to reference Yu, Y.J., Tian, X.G., Lu, T.J.: Fractional order generalized electro–magneto-thermo-elasticity. Eur. J. Mech. A Solids 42, 188–202 (2013)MathSciNetCrossRef Yu, Y.J., Tian, X.G., Lu, T.J.: Fractional order generalized electro–magneto-thermo-elasticity. Eur. J. Mech. A Solids 42, 188–202 (2013)MathSciNetCrossRef
11.
go back to reference Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)MathSciNetCrossRef Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)MathSciNetCrossRef
12.
go back to reference Sobolev, S.: Equations of transfer in non-local media. Int. J. Heat Mass Transf. 37, 2175–2182 (1994)CrossRef Sobolev, S.: Equations of transfer in non-local media. Int. J. Heat Mass Transf. 37, 2175–2182 (1994)CrossRef
13.
go back to reference Chan, W.L., Averback, R.S., Cahill, D.G.: Dynamics of femtosecond laser-induced melting of silver. Phys. Rev. B 78, 214107 (2008)CrossRef Chan, W.L., Averback, R.S., Cahill, D.G.: Dynamics of femtosecond laser-induced melting of silver. Phys. Rev. B 78, 214107 (2008)CrossRef
14.
go back to reference Yu, Y.J., Li, G.L., Xue, Z.N.: The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale. Phys. Lett. A 380, 255–261 (2016)CrossRef Yu, Y.J., Li, G.L., Xue, Z.N.: The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale. Phys. Lett. A 380, 255–261 (2016)CrossRef
15.
go back to reference Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef
16.
go back to reference Ma, Y.: Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer. Appl. Phys. Lett. 101, 211905 (2012)CrossRef Ma, Y.: Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer. Appl. Phys. Lett. 101, 211905 (2012)CrossRef
17.
go back to reference Dong, Y., Cao, B.Y., Guo, Z.Y.: Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Physica E 56, 256–262 (2014)CrossRef Dong, Y., Cao, B.Y., Guo, Z.Y.: Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Physica E 56, 256–262 (2014)CrossRef
18.
go back to reference Yu, Y.J., Tian, X.G., Liu, X.R.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A Solids 60, 238–253 (2016)MathSciNetCrossRef Yu, Y.J., Tian, X.G., Liu, X.R.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A Solids 60, 238–253 (2016)MathSciNetCrossRef
19.
go back to reference Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R. Mec. 344, 388–401 (2016)CrossRef Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R. Mec. 344, 388–401 (2016)CrossRef
20.
go back to reference Goshima, T., Miyao, K.: Transient thermal stresses in an infinite plate with a hole due to rotating heat source. J. Therm. Stress. 13, 43–56 (1990)CrossRef Goshima, T., Miyao, K.: Transient thermal stresses in an infinite plate with a hole due to rotating heat source. J. Therm. Stress. 13, 43–56 (1990)CrossRef
21.
go back to reference Sherief, H.H., Anwar, M.N.: Generalized thermoelasticity problem for a plate subjected to moving heat sources on both sides. J. Therm. Stress. 15, 489–505 (1992)CrossRef Sherief, H.H., Anwar, M.N.: Generalized thermoelasticity problem for a plate subjected to moving heat sources on both sides. J. Therm. Stress. 15, 489–505 (1992)CrossRef
22.
go back to reference Ootao, Y., Akai, T., Tanigawa, Y.: Three-dimensional transient thermal stress analysis of a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction. J. Therm. Stress. 18, 497–512 (1995)CrossRef Ootao, Y., Akai, T., Tanigawa, Y.: Three-dimensional transient thermal stress analysis of a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction. J. Therm. Stress. 18, 497–512 (1995)CrossRef
23.
go back to reference Postacioğlu, N., Tarhan, D., Kapadia, P.: Wave pattern produced by a heat source moving with constant velocity on the top of an infinite plate. J. Therm. Stress. 26, 767–777 (2003)CrossRef Postacioğlu, N., Tarhan, D., Kapadia, P.: Wave pattern produced by a heat source moving with constant velocity on the top of an infinite plate. J. Therm. Stress. 26, 767–777 (2003)CrossRef
24.
go back to reference Yapici, H., Genç, M.S., Özişik, G.: Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source. J. Therm. Stress. 31, 476–493 (2008)CrossRef Yapici, H., Genç, M.S., Özişik, G.: Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source. J. Therm. Stress. 31, 476–493 (2008)CrossRef
25.
go back to reference Bachher, M., Sarkar, N., Lahiri, A.: Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer. Int. J. Mech. Sci. 89, 84–91 (2014)CrossRef Bachher, M., Sarkar, N., Lahiri, A.: Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer. Int. J. Mech. Sci. 89, 84–91 (2014)CrossRef
26.
go back to reference Bachher, M., Sarkar, N., Lahiri, A.: Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. Meccanica 50, 2167–217 (2015)MathSciNetCrossRef Bachher, M., Sarkar, N., Lahiri, A.: Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. Meccanica 50, 2167–217 (2015)MathSciNetCrossRef
27.
go back to reference Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Wave Random Complex 29, 595–613 (2019)MathSciNetCrossRef Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Wave Random Complex 29, 595–613 (2019)MathSciNetCrossRef
28.
go back to reference Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef
29.
go back to reference Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef
30.
go back to reference Lebon, G., Grmela, M.: Weakly nonlocal heat equation in rigid solids. Phys. Lett. A 214, 184–188 (1996)CrossRef Lebon, G., Grmela, M.: Weakly nonlocal heat equation in rigid solids. Phys. Lett. A 214, 184–188 (1996)CrossRef
31.
go back to reference Sellitto, A., Jou, D., Bafaluy, J.: Non-local effects in radial heat transport in silicon thin layers and grapheme sheets. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 1217–1229 (2011)CrossRef Sellitto, A., Jou, D., Bafaluy, J.: Non-local effects in radial heat transport in silicon thin layers and grapheme sheets. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 1217–1229 (2011)CrossRef
32.
go back to reference Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)MathSciNetCrossRef Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)MathSciNetCrossRef
33.
go back to reference Jou, D., Cimmelli, V.A., Sellitto, A.: Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int. J. Heat Mass Transf. 55, 2338–2344 (2012)CrossRef Jou, D., Cimmelli, V.A., Sellitto, A.: Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int. J. Heat Mass Transf. 55, 2338–2344 (2012)CrossRef
34.
go back to reference Burnett, D.: The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40, 382–435 (1936)MathSciNetCrossRef Burnett, D.: The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40, 382–435 (1936)MathSciNetCrossRef
35.
go back to reference He, T., Cao, L.: A problem of generalized magneto-thermoelastic thin slim strip subjected to a moving heat source. Math. Comput. Model. 49, 1710–1720 (2009)MathSciNetCrossRef He, T., Cao, L.: A problem of generalized magneto-thermoelastic thin slim strip subjected to a moving heat source. Math. Comput. Model. 49, 1710–1720 (2009)MathSciNetCrossRef
36.
go back to reference Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, New York (1976)MATH Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, New York (1976)MATH
37.
Metadata
Title
Thermoelastic responses of a finite rod due to nonlocal heat conduction
Author
Nantu Sarkar
Publication date
11-12-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 3/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02583-9

Other articles of this Issue 3/2020

Acta Mechanica 3/2020 Go to the issue

Premium Partners