Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

1. Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation

Authors : Andrés Cantarero, F. Xavier Àlvarez

Published in: Nanoscale Thermoelectrics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermoelectric efficiency of a material depends on its electronic and phononic properties. It is normally given in terms of the dimensionless figure of merit Z T = σ S 2 Tκ. The parameters involved in Z T are the electrical conductivity σ, the Seebeck coefficient S, and the thermal conductivity κ. The thermal conductivity has two contributions, κ = κ e + κ L , the electron thermal conductivity κ e and the lattice thermal conductivity κ L . In this chapter all these parameters will be deduced for metals and semiconductors, starting from the Boltzmann transport equation (BTE). The electrical conductivity, the Seebeck coefficient, and the electronic thermal conductivity will be obtained from the BTE for electrons. Similarly, the lattice or phonon thermal conductivity will be given from the BTE for phonons. The ab initio approaches to obtain both the electronic and phononic transport via the BTE will also be analyzed. All the theoretical studies are based on the relaxation time approximation. The expressions for the relaxation times for electrons and phonons will be discussed. The results will be particularized to nanostructures whenever is possible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin (1980)CrossRef Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin (1980)CrossRef
2.
go back to reference Zimann, J.M.: Electrons and Phonons. Oxford University Press, London (1960) Zimann, J.M.: Electrons and Phonons. Oxford University Press, London (1960)
3.
go back to reference Cantarero, A., Martinez-Pastor, J., Segura, A., Chevy, A.: Transport properties of bismuth sulfide single crystals. Phys. Rev. B 35, 9586–9590 (1987)CrossRef Cantarero, A., Martinez-Pastor, J., Segura, A., Chevy, A.: Transport properties of bismuth sulfide single crystals. Phys. Rev. B 35, 9586–9590 (1987)CrossRef
4.
go back to reference Asen-Palmer, M., Bartkowski, K., Gmelin, E., Cardona, M., Zhernov, A.P., Inyushkin, A.V., Taldenkov, A., Ozhogin, V.I., Itoh, K.M., Haller, E.E.: Thermal conductivity of germanium crystals with different isotopic composition. Phys. Rev. B 56, 9431–9447 (1997)CrossRef Asen-Palmer, M., Bartkowski, K., Gmelin, E., Cardona, M., Zhernov, A.P., Inyushkin, A.V., Taldenkov, A., Ozhogin, V.I., Itoh, K.M., Haller, E.E.: Thermal conductivity of germanium crystals with different isotopic composition. Phys. Rev. B 56, 9431–9447 (1997)CrossRef
5.
go back to reference de Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Lattice thermal conductivity of silicon nanowires, J. Thermoelectricity 4, 11 (2013) de Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Lattice thermal conductivity of silicon nanowires, J. Thermoelectricity 4, 11 (2013)
6.
go back to reference Comas, F., Trallero-Giner, C., Cantarero, A.: Phonons and electron–phonon interaction in quantum wires. Phys. Rev. B 47, 7602–7605 (1993)CrossRef Comas, F., Trallero-Giner, C., Cantarero, A.: Phonons and electron–phonon interaction in quantum wires. Phys. Rev. B 47, 7602–7605 (1993)CrossRef
7.
go back to reference Callaway, J.: Model for the lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefMATH Callaway, J.: Model for the lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefMATH
8.
go back to reference Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–271 (1963)CrossRef Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–271 (1963)CrossRef
9.
go back to reference Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef
10.
go back to reference Krumhansl, J.A.: Thermal conductivity of insulating crystals in the presence of normal processes. Proc. Phys. Soc. 85, 921–930 (1965)CrossRef Krumhansl, J.A.: Thermal conductivity of insulating crystals in the presence of normal processes. Proc. Phys. Soc. 85, 921–930 (1965)CrossRef
11.
go back to reference Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef
12.
go back to reference Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)CrossRef Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)CrossRef
13.
go back to reference Klemans, P.G.: In: Seitz, F., Turnbull, D. (eds.) Thermal Conductivity and Lattice Vibrational Modes. Solid State Physics, vol. 7, p. 1–98. Academic Press, New York (1958) Klemans, P.G.: In: Seitz, F., Turnbull, D. (eds.) Thermal Conductivity and Lattice Vibrational Modes. Solid State Physics, vol. 7, p. 1–98. Academic Press, New York (1958)
14.
go back to reference Ward A., Broido D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef Ward A., Broido D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef
15.
go back to reference Herring C.: Role of low-energy phonons in thermal conduction. Phys. Rev. 95, 954–965 (1954)CrossRefMATH Herring C.: Role of low-energy phonons in thermal conduction. Phys. Rev. 95, 954–965 (1954)CrossRefMATH
16.
go back to reference Weber, W.: The adiabatic bond charge model for the phonons in diamond, Si, Ge and α − Sn. Phys. Rev. B 15, 4789–4803 (1977)CrossRef Weber, W.: The adiabatic bond charge model for the phonons in diamond, Si, Ge and α − Sn. Phys. Rev. B 15, 4789–4803 (1977)CrossRef
17.
go back to reference Camacho, J., Cantarero, A.: Phonon dispersion in CdSe: the bond charge model. Phys. Stat. Sol. (b) 211, 233–236 (2000) Camacho, J., Cantarero, A.: Phonon dispersion in CdSe: the bond charge model. Phys. Stat. Sol. (b) 211, 233–236 (2000)
18.
go back to reference Nilsson, G., Nelin, G.: Study of the homology between silicon and germanium by thermal-neutron spectrometry. Phys. Rev. B 6, 3777–3786 (1972)CrossRef Nilsson, G., Nelin, G.: Study of the homology between silicon and germanium by thermal-neutron spectrometry. Phys. Rev. B 6, 3777–3786 (1972)CrossRef
19.
go back to reference Glassbrenner, C., Slack, G.: Thermal conductivity of Silicon and Germanium from 3 K to the melting point. Phys. Rev. A1058–A1069 (1964) Glassbrenner, C., Slack, G.: Thermal conductivity of Silicon and Germanium from 3 K to the melting point. Phys. Rev. A1058–A1069 (1964)
20.
go back to reference Song, D., Chen, G.: Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–690 (2004)CrossRef Song, D., Chen, G.: Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–690 (2004)CrossRef
21.
go back to reference Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2937 (2003)CrossRef Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2937 (2003)CrossRef
22.
go back to reference Asheghi, M., Leung, Y.K., Wong, S.S., Goodson, K.E.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1801 (1997)CrossRef Asheghi, M., Leung, Y.K., Wong, S.S., Goodson, K.E.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1801 (1997)CrossRef
23.
go back to reference Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)CrossRef Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)CrossRef
24.
go back to reference Sheidemantel, T.J., Ambrosch-Draxl, C., Thomhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)CrossRef Sheidemantel, T.J., Ambrosch-Draxl, C., Thomhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)CrossRef
25.
go back to reference Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave1Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2 Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave1Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2
26.
go back to reference Singh, D.J.: Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010)CrossRef Singh, D.J.: Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010)CrossRef
27.
go back to reference Crocker, A.J., Rogers, L.M.: Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br. J. Appl. Phys. 18, 563–573 (1967)CrossRef Crocker, A.J., Rogers, L.M.: Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br. J. Appl. Phys. 18, 563–573 (1967)CrossRef
28.
go back to reference Martin, J., Wang, L., Chen, L., Nolas, G.S.: Enhanced Seebeck coefficient through energy barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009)CrossRef Martin, J., Wang, L., Chen, L., Nolas, G.S.: Enhanced Seebeck coefficient through energy barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009)CrossRef
29.
go back to reference Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of termoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of termoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef
30.
go back to reference Harman, T.C., Spears, D.L., Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Math. 25, 1121–1127 (1996)CrossRef Harman, T.C., Spears, D.L., Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Math. 25, 1121–1127 (1996)CrossRef
31.
go back to reference Ward, A., Broido, D.A., Stewart, D.A., Deinzer, G.: Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)CrossRef Ward, A., Broido, D.A., Stewart, D.A., Deinzer, G.: Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)CrossRef
32.
go back to reference Li, W., Mingo, N., Lindsay, L., Broido, D.A., Stweart, D.A., Katcho, N.A.: Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B 85, 195436 (2012)CrossRef Li, W., Mingo, N., Lindsay, L., Broido, D.A., Stweart, D.A., Katcho, N.A.: Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B 85, 195436 (2012)CrossRef
Metadata
Title
Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation
Authors
Andrés Cantarero
F. Xavier Àlvarez
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-02012-9_1