Skip to main content
Top

2020 | OriginalPaper | Chapter

10. Thermoelectric Power Factor Under Strain-Induced Band-Alignment in the Half-Heuslers NbCoSn and TiCoSb

Authors : Chathurangi Kumarasinghe, Neophytos Neophytou

Published in: Theory and Simulation in Physics for Materials Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Band convergence is an effective strategy to improve the thermoelectric performance of complex bandstructure thermoelectric materials. Half-Heuslers are good candidates for band convergence studies because they have multiple bands near the valence bad edge that can be converged through various band engineering approaches providing power factor improvement opportunities. Theoretical calculations to identify the outcome of band convergence employ various approximations for the carrier scattering relaxation times (the most common being the constant relaxation time approximation) due to the high computational complexity involved in extracting them accurately. Here, we compare the outcome of strain-induced band convergence under two such scattering scenarios: (i) the most commonly used constant relaxation time approximation and (ii) energy dependent inter- and intra-valley scattering considerations for the half-Heuslers NbCoSn and TiCoSb. We show that the outcome of band convergence on the power factor depends on the carrier scattering assumptions, as well as the temperature. For both materials examined, band convergence improves the power factor. For NbCoSn, however, band convergence becomes more beneficial as temperature increases, under both scattering relaxation time assumptions. In the case of TiCoSb, on the other hand, constant relaxation time considerations also indicate that the relative power factor improvement increases with temperature, but under the energy dependent scattering time considerations, the relative improvement weakens with temperature. This indicates that the scattering details need to be accurately considered in band convergence studies to predict more accurate trends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef
3.
go back to reference A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRef A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRef
4.
go back to reference K. Koumoto et al., Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)CrossRef K. Koumoto et al., Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)CrossRef
5.
go back to reference P. Norouzzadeh, D. Vashaee, Classification of valleytronics in thermoelectricity. Sci. Rep. 6, 22724 (2016)CrossRef P. Norouzzadeh, D. Vashaee, Classification of valleytronics in thermoelectricity. Sci. Rep. 6, 22724 (2016)CrossRef
6.
go back to reference Y. Pei et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)CrossRef Y. Pei et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)CrossRef
7.
go back to reference S. Bhattacharya, G.K.H. Madsen, High-throughput exploration of alloying as design strategy for thermoelectrics. Phys. Rev. B 92, 85205 (2015)CrossRef S. Bhattacharya, G.K.H. Madsen, High-throughput exploration of alloying as design strategy for thermoelectrics. Phys. Rev. B 92, 85205 (2015)CrossRef
8.
go back to reference G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)CrossRef G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)CrossRef
9.
go back to reference J.-H. Lee, Significant enhancement in the thermoelectric performance of strained nanoporous Si. Phys. Chem. Chem. Phys. 16, 2425–2429 (2014)CrossRef J.-H. Lee, Significant enhancement in the thermoelectric performance of strained nanoporous Si. Phys. Chem. Chem. Phys. 16, 2425–2429 (2014)CrossRef
10.
go back to reference L. Huang et al., Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bull. 76, 107–112 (2016)CrossRef L. Huang et al., Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bull. 76, 107–112 (2016)CrossRef
11.
go back to reference A. Page, P.F.P. Poudeu, C. Uher, A first-principles approach to half-Heusler thermoelectrics: accelerated prediction and understanding of material properties. J. Mater. 2, 104–113 (2016) A. Page, P.F.P. Poudeu, C. Uher, A first-principles approach to half-Heusler thermoelectrics: accelerated prediction and understanding of material properties. J. Mater. 2, 104–113 (2016)
12.
go back to reference W. Xie et al., Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012)CrossRef W. Xie et al., Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012)CrossRef
13.
go back to reference J.-W.G. Bos, R.A. Downie, Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Matter 26, 433201 (2014)CrossRef J.-W.G. Bos, R.A. Downie, Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Matter 26, 433201 (2014)CrossRef
14.
go back to reference F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001 (2012)CrossRef F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001 (2012)CrossRef
15.
go back to reference T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)CrossRef T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)CrossRef
16.
go back to reference J. Yang et al., Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008)CrossRef J. Yang et al., Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008)CrossRef
17.
go back to reference C. Kumarasinghe, N. Neophytou, Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: the case of Co-based half-Heusler alloys. Phys. Rev. B 99, 195202 (2019)CrossRef C. Kumarasinghe, N. Neophytou, Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: the case of Co-based half-Heusler alloys. Phys. Rev. B 99, 195202 (2019)CrossRef
18.
go back to reference G.D. Mahan, T. Balseiro, A.C. Bariloche, The best thermoelectric. Proc. Natl. Acad. Sci. 93, 7436–7439 (1996)CrossRef G.D. Mahan, T. Balseiro, A.C. Bariloche, The best thermoelectric. Proc. Natl. Acad. Sci. 93, 7436–7439 (1996)CrossRef
19.
go back to reference N. Neophytou, M. Wagner, H. Kosina, S. Selberherr, Analysis of thermoelectric properties of scaled silicon nanowires using an atomistic tight-binding model. J. Electron. Mater. 39, 1902–1908 (2010)CrossRef N. Neophytou, M. Wagner, H. Kosina, S. Selberherr, Analysis of thermoelectric properties of scaled silicon nanowires using an atomistic tight-binding model. J. Electron. Mater. 39, 1902–1908 (2010)CrossRef
20.
go back to reference P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009) P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)
21.
go back to reference J. Corps et al., Interplay of metal-atom ordering, fermi level tuning, and thermoelectric properties in cobalt shandites Co3M2S2 (M = Sn, In). Chem. Mater. 27, 3946–3956 (2015)CrossRef J. Corps et al., Interplay of metal-atom ordering, fermi level tuning, and thermoelectric properties in cobalt shandites Co3M2S2 (M = Sn, In). Chem. Mater. 27, 3946–3956 (2015)CrossRef
22.
go back to reference S. Roychowdhury, U.S. Shenoy, U.V. Waghmare, K. Biswas, An enhanced Seebeck coefficient and high thermoelectric performance in p-type In and Mg Co-doped Sn1−xPbxTe via the co-adjuvant effect of the resonance level and heavy hole valence band. J. Mater. Chem. C 5, 5737–5748 (2017)CrossRef S. Roychowdhury, U.S. Shenoy, U.V. Waghmare, K. Biswas, An enhanced Seebeck coefficient and high thermoelectric performance in p-type In and Mg Co-doped Sn1−xPbxTe via the co-adjuvant effect of the resonance level and heavy hole valence band. J. Mater. Chem. C 5, 5737–5748 (2017)CrossRef
23.
go back to reference G. Capellini et al., Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metaloxide-semiconductor process. Opt. Express 22, 399–410 (2014)CrossRef G. Capellini et al., Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metaloxide-semiconductor process. Opt. Express 22, 399–410 (2014)CrossRef
24.
go back to reference I. Jeong, J. Kwon, C. Kim, Y.J. Park, Design and numerical analysis of surface plasmon-enhanced fin Ge–Si light-emitting diode. Opt. Express 22, 5927 (2014)CrossRef I. Jeong, J. Kwon, C. Kim, Y.J. Park, Design and numerical analysis of surface plasmon-enhanced fin Ge–Si light-emitting diode. Opt. Express 22, 5927 (2014)CrossRef
25.
go back to reference K.L. Low, Y. Yang, G. Han, W. Fan, Y.-C. Yeo, Electronic band structure and effective mass parameters of Ge1−xSnx alloys. Cit. J. Appl. Phys. 112, 73707 (2012)CrossRef K.L. Low, Y. Yang, G. Han, W. Fan, Y.-C. Yeo, Electronic band structure and effective mass parameters of Ge1−xSnx alloys. Cit. J. Appl. Phys. 112, 73707 (2012)CrossRef
26.
go back to reference J. Zhou, S. Cheng, W.-L. You, H. Jiang, Effects of intervalley scattering on the transport properties in one-dimensional valleytronic devices. Sci. Rep. 6, 23211 (2016)CrossRef J. Zhou, S. Cheng, W.-L. You, H. Jiang, Effects of intervalley scattering on the transport properties in one-dimensional valleytronic devices. Sci. Rep. 6, 23211 (2016)CrossRef
27.
go back to reference Patrizio Graziosi, Chathurangi Kumarasinghe, Neophytos Neophytou, Impact of the scattering physics on the power factor of complex thermoelectric materials. J. Appl. Phys. 126(15), 155701 (2019). Patrizio Graziosi, Chathurangi Kumarasinghe, Neophytos Neophytou, Impact of the scattering physics on the power factor of complex thermoelectric materials. J. Appl. Phys. 126(15), 155701 (2019).
Metadata
Title
Thermoelectric Power Factor Under Strain-Induced Band-Alignment in the Half-Heuslers NbCoSn and TiCoSb
Authors
Chathurangi Kumarasinghe
Neophytos Neophytou
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-37790-8_10