Skip to main content
Top
Published in:

29-01-2025 | Research

Thermomechanical analysis and additive manufacturing of a target for nuclear physics

Authors: H. Benmansour, G. Cavoto, G. Chiarello, G. del Maso, M. Meucci, S. Milana, A. Papa, V. Pettinacci, F. Renga, P. Schwendimann, B. Vitali, C. Voena

Published in: Meccanica | Issue 2/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In nuclear physics experiments, a typical engineering issue is the dissipation of heat from very small surfaces and volumes on which a significant amount of energy is thermally deposited by a small-sized beam of particles. This article describes a finite element method simulation methodology for heat dissipation and the subsequent design and development of the holder of a lithium-based target up to its construction. The target described in the paper is used to study the \(^7\)Li(p,e\(^+\)e\(^{-}\))\(^8\)Be process with the proton Cockcroft–Walton accelerator of the MEG experiment at the Paul Scherrer Institut (Villigen, Switzerland). The material of the target region crossed by the emitted e\(^+\)e\(^{-}\) has to be reduced as much as possible to minimally perturb the measurement of their momenta, and a thin target is required. In order to ensure the dissipation of the thermal load on the target, an in-depth thermomechanical and structural simulation was realized using ANSYS. This allowed to verify the efficiency of the dissipation mechanisms, the maximum temperatures reached, and the thermal stress on all parts to ensure a sufficiently long lifetime of the target for the physics process measurement. To realize an optimized geometry ensuring continuity of the thermal flux—essential to dissipate the incoming power—the additive manufacturing was deemed necessary. The target support has been realized in pure copper, exploiting its excellent conductive properties and the cutting-edge additive manufacturing technologies, recently developed to overcome the inherent difficulties of Laser Powder Bed Fusion (L-PBF) technology to this material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cauchi M, Assmann RW, Bertarelli A, Carra F, Cerutti F, Lari L, Redaelli S, Mollicone P, Sammut N (2015) Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts. Phys Rev ST Accel Beams 18:041002CrossRef Cauchi M, Assmann RW, Bertarelli A, Carra F, Cerutti F, Lari L, Redaelli S, Mollicone P, Sammut N (2015) Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts. Phys Rev ST Accel Beams 18:041002CrossRef
3.
go back to reference Baldini A et al (2018) (MEG Collaboration), The design of the MEG II experiment. Eur Phys J C 78:380CrossRefMATH Baldini A et al (2018) (MEG Collaboration), The design of the MEG II experiment. Eur Phys J C 78:380CrossRefMATH
8.
go back to reference Chiarello G (2018) The cylindrical drift chamber for the MEG II. PoS EPS-HEP2017. 689 Chiarello G (2018) The cylindrical drift chamber for the MEG II. PoS EPS-HEP2017. 689
9.
go back to reference Chiappini M et al (2023) The cylindrical drift chamber of the MEG II experiment. Nucl Instrum Meth A 1047:167740CrossRefMATH Chiappini M et al (2023) The cylindrical drift chamber of the MEG II experiment. Nucl Instrum Meth A 1047:167740CrossRefMATH
10.
go back to reference Bergman TL (2011) Fundamentals of heat and mass transfer. WileyMATH Bergman TL (2011) Fundamentals of heat and mass transfer. WileyMATH
11.
go back to reference Budynas RG, Nisbett JK (2008) Shigley’s mechanical engineering design, 8th edn. McGraw-Hill, New York Budynas RG, Nisbett JK (2008) Shigley’s mechanical engineering design, 8th edn. McGraw-Hill, New York
Metadata
Title
Thermomechanical analysis and additive manufacturing of a target for nuclear physics
Authors
H. Benmansour
G. Cavoto
G. Chiarello
G. del Maso
M. Meucci
S. Milana
A. Papa
V. Pettinacci
F. Renga
P. Schwendimann
B. Vitali
C. Voena
Publication date
29-01-2025
Publisher
Springer Netherlands
Published in
Meccanica / Issue 2/2025
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-024-01934-8

Premium Partners