Skip to main content
Top

2014 | OriginalPaper | Chapter

6. Thermomechanical Modeling of Multiphase Steels: Classical and Modern Engineering Analyses

Authors : A. Andrade-Campos, P. Vasconcelos, J. F. Caseiro, J. A. Oliveira

Published in: Modern Mechanical Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the thermodynamic foundations for the analysis of multiphase steels and some conventional approaches used in the analysis of these materials, including classical constitutive equations. Afterwards, the standard strategies for modeling multiphase metals are introduced as well as some examples. The new assumptions and today’s modeling strategies, that include complex numerical simulation methods such as the finite element method, finite volume, finite differences and phase-field methods, are also presented and compared with the previous approaches, with the aid of examples and research results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The changes of the microstructure in metals and alloys.
 
2
From the Greek, Dendros means tree.
 
3
The activation energy is the necessary energy to move an atom over a barrier from one lattice site to another. The barrier is related with the assumption that the atom must vibrate with adequate amplitude to break the adjacent neighboring bonds in order to move to a new position.
 
4
The restriction of the transformed region growth by other transformed region.
 
Literature
1.
go back to reference Callister WD, Rethwisch DG (2012) Fundamentals of materials science and engineering an integrated approach. John Wiley & Sons, New York Callister WD, Rethwisch DG (2012) Fundamentals of materials science and engineering an integrated approach. John Wiley & Sons, New York
2.
go back to reference Christian JW (2002) The theory of transformation in metals and alloys. Pergamon Press, Oxford Christian JW (2002) The theory of transformation in metals and alloys. Pergamon Press, Oxford
3.
go back to reference Campbell FC (2008) Elements of metallurgy and engineering alloys, ASM International Campbell FC (2008) Elements of metallurgy and engineering alloys, ASM International
4.
go back to reference Porter DA, Easterling E (1992) Transformations in metals and alloys. Chapman & Hall, LondonCrossRef Porter DA, Easterling E (1992) Transformations in metals and alloys. Chapman & Hall, LondonCrossRef
5.
go back to reference Shackelford JF (2008) Introduction to materials science for engineers, 7th edn. Prentice Hall, New Jersey Shackelford JF (2008) Introduction to materials science for engineers, 7th edn. Prentice Hall, New Jersey
6.
go back to reference Gür CH, Pan J (2009) Handbook of thermal process modeling of steels. CRC Press, Boca Raton Gür CH, Pan J (2009) Handbook of thermal process modeling of steels. CRC Press, Boca Raton
7.
go back to reference Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials, department of materials science and engineering. MIT, Wiley-Interscience, Cambridge Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials, department of materials science and engineering. MIT, Wiley-Interscience, Cambridge
8.
go back to reference Cahn RW, Hanssen P (1996) Physical metallurgy, vol I. North-Holland, Amsterdam Cahn RW, Hanssen P (1996) Physical metallurgy, vol I. North-Holland, Amsterdam
9.
go back to reference Kolmogorov AN (1937), Izv Akad Nauk SSR Ser Fiz Mat Nauk 3:355 (in Russian) Kolmogorov AN (1937), Izv Akad Nauk SSR Ser Fiz Mat Nauk 3:355 (in Russian)
10.
go back to reference Johnson WA, Mehl RF (1939) Trans Am Crystallogr Assoc 135:416 Johnson WA, Mehl RF (1939) Trans Am Crystallogr Assoc 135:416
12.
go back to reference Sumpter ML (2004) Johnson-Mehl-Avrami kinetics of intracellular ice formation in confluent tissue constructs, PhD Thesis, Georgia Institute of Technology Sumpter ML (2004) Johnson-Mehl-Avrami kinetics of intracellular ice formation in confluent tissue constructs, PhD Thesis, Georgia Institute of Technology
13.
go back to reference Krauss G (2005) Steels: processing, structure, and performance, ASM International Krauss G (2005) Steels: processing, structure, and performance, ASM International
14.
go back to reference Bhadeshia HKDH, Honeycombe R (2006) Steels: microstructure and properties, 3rd edn. Elsiever Bhadeshia HKDH, Honeycombe R (2006) Steels: microstructure and properties, 3rd edn. Elsiever
15.
go back to reference Sourmail T (2004) Simultaneous precipitation in austenitic stainless steels, PhD Thesis, University of Cambridge Sourmail T (2004) Simultaneous precipitation in austenitic stainless steels, PhD Thesis, University of Cambridge
17.
go back to reference Mittemeijer EJ (2010) Fundamentals of materials science—the microstructure—property relationship using metals as model systems. Springer, Berlin Mittemeijer EJ (2010) Fundamentals of materials science—the microstructure—property relationship using metals as model systems. Springer, Berlin
18.
go back to reference Brown SB, Kwon HK, Anand L (1989) An internal variable constitutive model for hot workin on metals. Int J Plast 5:95–130CrossRefMATH Brown SB, Kwon HK, Anand L (1989) An internal variable constitutive model for hot workin on metals. Int J Plast 5:95–130CrossRefMATH
19.
20.
go back to reference MacKenzie AC, Moakler M (1973) On the relaxation of residual stress fields by thermal stress relief. In: 2nd international conference pressure and vessel technology, San Antonio, Texas pp. 1167–1178 MacKenzie AC, Moakler M (1973) On the relaxation of residual stress fields by thermal stress relief. In: 2nd international conference pressure and vessel technology, San Antonio, Texas pp. 1167–1178
21.
go back to reference Hossain S, Truman CE, Smith DJ, Daymond MR (2006) Application of quenching to create highly triaxial residual stresses in type 316H stainless steels. Int J Mech Sci 48(3):235CrossRef Hossain S, Truman CE, Smith DJ, Daymond MR (2006) Application of quenching to create highly triaxial residual stresses in type 316H stainless steels. Int J Mech Sci 48(3):235CrossRef
22.
go back to reference Andrade-Campos A, Teixeira-Dias F (2007) Numerical analysis of triaxial residual stresses in quenched 316h stainless steel. Mater Sci Forum 553:7–14CrossRef Andrade-Campos A, Teixeira-Dias F (2007) Numerical analysis of triaxial residual stresses in quenched 316h stainless steel. Mater Sci Forum 553:7–14CrossRef
23.
go back to reference Bartels S, Carstensen C, Hackl K, Hoppe U (2004) Effective relaxation for microstructure simulations: algorithms and applications. Comput Methods Appl Mech Eng 193:5143–5175CrossRefMATHMathSciNet Bartels S, Carstensen C, Hackl K, Hoppe U (2004) Effective relaxation for microstructure simulations: algorithms and applications. Comput Methods Appl Mech Eng 193:5143–5175CrossRefMATHMathSciNet
24.
go back to reference McDowell LD (2010) A perspective on trends in multiscale plasticity. Int J Plast 26:1280–1309CrossRefMATH McDowell LD (2010) A perspective on trends in multiscale plasticity. Int J Plast 26:1280–1309CrossRefMATH
25.
go back to reference Andrade-Campos A (2010) The influence of the material heat treatment and phase transformations in forming processes. Int J Mater Form 3:1139–1142CrossRef Andrade-Campos A (2010) The influence of the material heat treatment and phase transformations in forming processes. Int J Mater Form 3:1139–1142CrossRef
26.
go back to reference Caseiro JF, Oliveira JA, Andrade-Campos A (2011) Thermomechanical modelling strategies for multiphase steels. Int J Mech Sci 53:720–733CrossRef Caseiro JF, Oliveira JA, Andrade-Campos A (2011) Thermomechanical modelling strategies for multiphase steels. Int J Mech Sci 53:720–733CrossRef
27.
go back to reference Wei YJ, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52:2587–2616CrossRefMATH Wei YJ, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52:2587–2616CrossRefMATH
28.
go back to reference Brassart L, Doghri I, Delannay L (2009) Self-consistent modeling of DP steel incorporating short range interactions. Int J Mater Form 2:447–450CrossRef Brassart L, Doghri I, Delannay L (2009) Self-consistent modeling of DP steel incorporating short range interactions. Int J Mater Form 2:447–450CrossRef
29.
go back to reference Huang C-J, Browne D (2006) Phase-field model prediction of nucleation and coarsening during autenite/ferrite transformation in steels. Metall Mater Trans A 37:589–598CrossRef Huang C-J, Browne D (2006) Phase-field model prediction of nucleation and coarsening during autenite/ferrite transformation in steels. Metall Mater Trans A 37:589–598CrossRef
30.
go back to reference Qin RS, Bhadeshia HKDH (2010) Phase field method. Mater Sci Technol 26:803–811CrossRef Qin RS, Bhadeshia HKDH (2010) Phase field method. Mater Sci Technol 26:803–811CrossRef
31.
go back to reference Avrami MA (1939) Kinetics of phase change-I. General theory. J Chem Phys 7:1103–1109CrossRef Avrami MA (1939) Kinetics of phase change-I. General theory. J Chem Phys 7:1103–1109CrossRef
32.
go back to reference Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60CrossRef Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60CrossRef
33.
go back to reference Jones SJ, Bhadeshia HKDH (1997) Modelling the development of microstructure in power plant steels. Acta Mater 45:2911–2920CrossRef Jones SJ, Bhadeshia HKDH (1997) Modelling the development of microstructure in power plant steels. Acta Mater 45:2911–2920CrossRef
34.
go back to reference Rios P, Villa E (2011) Simultaneous and sequential transformations. Acta Mater 59:1632–1643CrossRef Rios P, Villa E (2011) Simultaneous and sequential transformations. Acta Mater 59:1632–1643CrossRef
35.
go back to reference Ashby MF, Shercliff HR, Cebon D (2007) Materials: engineering, science processing and design. Butterworth-Heinemann, Oxford Ashby MF, Shercliff HR, Cebon D (2007) Materials: engineering, science processing and design. Butterworth-Heinemann, Oxford
36.
go back to reference Boyer (ed) (1977) Atlas of isothermal transformation and cooling transformation diagrams. American Society for Metals, p. 369 Boyer (ed) (1977) Atlas of isothermal transformation and cooling transformation diagrams. American Society for Metals, p. 369
Metadata
Title
Thermomechanical Modeling of Multiphase Steels: Classical and Modern Engineering Analyses
Authors
A. Andrade-Campos
P. Vasconcelos
J. F. Caseiro
J. A. Oliveira
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-45176-8_6

Premium Partners