Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Thermophysical and Magnetocaloric Properties of the LaFe11.1Mn0.1Co0.7Si1.1 Alloy

Authors: N. Z. Abdulkadirova, A. G. Gamzatov, A. M. Aliev, P. Gebara

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

The heat capacity (CP), magnetocaloric effect (∆T and ∆SM), thermal diffusivity η(T), and electrical resistivity ρ(T) of the LaFe11.1Mn0.1Co0.7Si1.1 alloy are studied in the temperature range of 80–300 K in magnetic fields of up to 8 T. Entropy change ∆SM in a magnetic field of 1.8 T is found equal to 4.6 J/(kg K). An anomaly that consists of a sharp decrease in the electrical resistivity in a narrow temperature range and subsequent restoration of its metallic behavior is observed in the curve of temperature dependence ρ(T) near Curie temperature TC. In the vicinity of TC, the following direct relationship between ∆T and resistivity change ∆ρ is found in a magnetic field of 1.8 T: ∆T(T) = α∆ρ(T). The η(T) dependence shows a pronounced minimum near TC, which indicates strong scattering of heat carriers on fluctuations of the magnetic order parameter and, possibly, on the crystal lattice distortions.
Literature
1.
go back to reference A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003). CrossRef A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003). CrossRef
2.
go back to reference O. Gutfleisch, J. P. Liu, M. Willard, E. Brück, C. Chen, and S. G. Shankar, “Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient,” Adv. Mater. 23, 821–842 (2011). CrossRef O. Gutfleisch, J. P. Liu, M. Willard, E. Brück, C. Chen, and S. G. Shankar, “Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient,” Adv. Mater. 23, 821–842 (2011). CrossRef
3.
go back to reference V. K. Pecharsky, K. A. Gschneidner, A. O. Pecharsky, and A. M. Tishin, “Thermodynamics of the magnetocaloric effect,” Phys. Rev. B 64, 144406 (2001). CrossRef V. K. Pecharsky, K. A. Gschneidner, A. O. Pecharsky, and A. M. Tishin, “Thermodynamics of the magnetocaloric effect,” Phys. Rev. B 64, 144406 (2001). CrossRef
4.
go back to reference P. Gebara, P. Pawlik, B. Michalski, and J. J. Wyslocki, “Measurements of magnetocaloric effect in LaFe 11.14Co 0.66Si 1.2 – xAl x ( x = 0.1, 0.2, 0.3) alloys,” Acta Phys. Pol. 127, 576 (2015). CrossRef P. Gebara, P. Pawlik, B. Michalski, and J. J. Wyslocki, “Measurements of magnetocaloric effect in LaFe 11.14Co 0.66Si 1.2 – xAl x ( x = 0.1, 0.2, 0.3) alloys,” Acta Phys. Pol. 127, 576 (2015). CrossRef
5.
go back to reference B.-G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, “Recent progress in exploring magnetocaloric materials,” Adv. Mater. 21, 4545–564 (2009). CrossRef B.-G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, “Recent progress in exploring magnetocaloric materials,” Adv. Mater. 21, 4545–564 (2009). CrossRef
6.
go back to reference B.-G. Shen, F.-X. Hu, Q.-Y. Dong, and J. Sun, “Magnetic properties and magnetocaloric effects in NaZn 13-type La(Fe,Al) 13-based compounds,” Chin. Phys. B 22 (1), 017502 (2013). CrossRef B.-G. Shen, F.-X. Hu, Q.-Y. Dong, and J. Sun, “Magnetic properties and magnetocaloric effects in NaZn 13-type La(Fe,Al) 13-based compounds,” Chin. Phys. B 22 (1), 017502 (2013). CrossRef
7.
go back to reference N. Z. Abdulkadirova, A. M. Aliev, A. G. Gamzatov, and P. Gebara, “Specific heat and magnetocaloric effect of LaFe 11.2 – xMn xCo 0.7Si 1.1 ( x = 0, 0.1, 0.2, 0.3),” Phys. Solid State 62, 841–844 (2020). CrossRef N. Z. Abdulkadirova, A. M. Aliev, A. G. Gamzatov, and P. Gebara, “Specific heat and magnetocaloric effect of LaFe 11.2 – xMn xCo 0.7Si 1.1 ( x = 0, 0.1, 0.2, 0.3),” Phys. Solid State 62, 841–844 (2020). CrossRef
8.
go back to reference J. Shen, Y. X. Li, B. Gao, and B. G. Shen, “Magnetic properties and magnetic entropy changes of LaFe 11.0Co 0.8(Si 1 – xAl x) 1.2 compounds,” J. Magn. Magn. Mater. 310, 2823–2825 (2007). CrossRef J. Shen, Y. X. Li, B. Gao, and B. G. Shen, “Magnetic properties and magnetic entropy changes of LaFe 11.0Co 0.8(Si 1 – xAl x) 1.2 compounds,” J. Magn. Magn. Mater. 310, 2823–2825 (2007). CrossRef
9.
go back to reference P. Gębara and J. Marcin, “Influence of partial substitution of Fe by Mn on the thermomagnetic properties of magnetocaloric LaFe 11.2Co 0.7Si 1.1 alloy,” Acta Phys. Pol., A 133, 648–650 (2018). CrossRef P. Gębara and J. Marcin, “Influence of partial substitution of Fe by Mn on the thermomagnetic properties of magnetocaloric LaFe 11.2Co 0.7Si 1.1 alloy,” Acta Phys. Pol., A 133, 648–650 (2018). CrossRef
10.
go back to reference S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(Fe xSi 1 – x) 13La(Fe xSi 1 – x) 13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 8, 1276 (2020). S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(Fe xSi 1 – x) 13La(Fe xSi 1 – x) 13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 8, 1276 (2020).
11.
go back to reference F.-X. Hu, B.-G. Shen, J.-R. Sun, G.-J. Wang, and Z.‑H. Cheng, “Very large magnetic entropy change near room temperature in LaFe 11.2Co 0.7Si 1.1,” Appl. Phys. Lett. 80, 865 (2020). F.-X. Hu, B.-G. Shen, J.-R. Sun, G.-J. Wang, and Z.‑H. Cheng, “Very large magnetic entropy change near room temperature in LaFe 11.2Co 0.7Si 1.1,” Appl. Phys. Lett. 80, 865 (2020).
12.
go back to reference A. Yan, K. H. Müller, and O. Gutfleisch, “Magnetocaloric effect in LaFe 11.8 – xCo xSi 1.2 melt-spun ribbons,” J. Alloys Compd. 450, 18 (2008). CrossRef A. Yan, K. H. Müller, and O. Gutfleisch, “Magnetocaloric effect in LaFe 11.8 – xCo xSi 1.2 melt-spun ribbons,” J. Alloys Compd. 450, 18 (2008). CrossRef
13.
go back to reference X. B. Liu, D. H. Ryan, and Z. Altounian, “The order of magnetic phase transition in La(Fe 1 – xCo x) 11.4Si 1.6 compounds.,” J. Magn. Magn. Mater. 270, 305 (2004). CrossRef X. B. Liu, D. H. Ryan, and Z. Altounian, “The order of magnetic phase transition in La(Fe 1 – xCo x) 11.4Si 1.6 compounds.,” J. Magn. Magn. Mater. 270, 305 (2004). CrossRef
14.
go back to reference A. M. Aliev, A. B. Batdalov, and V. S. Kalitka, “Magnetocaloric properties of manganites in alternating magnetic fields,” JETP Lett. 90, 663–666 (2010). CrossRef A. M. Aliev, A. B. Batdalov, and V. S. Kalitka, “Magnetocaloric properties of manganites in alternating magnetic fields,” JETP Lett. 90, 663–666 (2010). CrossRef
15.
go back to reference A. G. Gamzatov, A. B. Batdalov, A. M. Aliev, M. Ellouze, and F. Jemma, “Heat capacity and the magnetocaloric effect in Pr 0.6Sr 0.4Mn 1 – xFe xO 3 manganite,” Phys. Solid State 59, 2092–2096 (2017). CrossRef A. G. Gamzatov, A. B. Batdalov, A. M. Aliev, M. Ellouze, and F. Jemma, “Heat capacity and the magnetocaloric effect in Pr 0.6Sr 0.4Mn 1 – xFe xO 3 manganite,” Phys. Solid State 59, 2092–2096 (2017). CrossRef
16.
go back to reference F.-X. Hu, et al., “Magnetoresistances and magnetic entropy changes associated with negative lattice expansions in NaZn 13-type compounds LaFeCoSi 14,” Chin. Phys. 14, 2329–2334 (2005). CrossRef F.-X. Hu, et al., “Magnetoresistances and magnetic entropy changes associated with negative lattice expansions in NaZn 13-type compounds LaFeCoSi 14,” Chin. Phys. 14, 2329–2334 (2005). CrossRef
17.
go back to reference A. B. Batdalov, A. G. Gamzatov, A. M. Aliev, N. Abdulkadirova, P. D. H. Yen, T. D. Thanh, N. T. Dung, and S.-C. Yu, “Magnetocaloric properties in the Pr 0.7Sr 0.3 – xCa xMnO 3: direct and indirect estimations from thermal diffusivity data,” J. Alloys Compd. 782, 729–734 (2019). CrossRef A. B. Batdalov, A. G. Gamzatov, A. M. Aliev, N. Abdulkadirova, P. D. H. Yen, T. D. Thanh, N. T. Dung, and S.-C. Yu, “Magnetocaloric properties in the Pr 0.7Sr 0.3 – xCa xMnO 3: direct and indirect estimations from thermal diffusivity data,” J. Alloys Compd. 782, 729–734 (2019). CrossRef
18.
go back to reference R. Rawat and I. Das, “The similar dependence of the magnetocaloric effect and magnetoresistance in TmCu and TmAg compounds and its implications,” J. Phys.: Conds. Matter 13, 379 (2000). R. Rawat and I. Das, “The similar dependence of the magnetocaloric effect and magnetoresistance in TmCu and TmAg compounds and its implications,” J. Phys.: Conds. Matter 13, 379 (2000).
19.
go back to reference N. Sakamoto, T. Kyômen, S. Tsubouchi, and M. Itoh, “Proportional relation between magnetoresistance and entropy suppression due to magnetic field in metallic ferromagnets,” Phys. Rev. B. 69, 092401 (2004). CrossRef N. Sakamoto, T. Kyômen, S. Tsubouchi, and M. Itoh, “Proportional relation between magnetoresistance and entropy suppression due to magnetic field in metallic ferromagnets,” Phys. Rev. B. 69, 092401 (2004). CrossRef
20.
go back to reference J. C. P. Campoy, E. J. R. Plaza, A. A. Coelho, and S. Gama, “Magnetoresistivity as a probe to the field-induced change of magnetic entropy in RAl 2 compounds ( R = Pr, Nd, Tb, Dy, Ho, Er),” Phys. Rev. B 74, 134410 (2006). CrossRef J. C. P. Campoy, E. J. R. Plaza, A. A. Coelho, and S. Gama, “Magnetoresistivity as a probe to the field-induced change of magnetic entropy in RAl 2 compounds ( R = Pr, Nd, Tb, Dy, Ho, Er),” Phys. Rev. B 74, 134410 (2006). CrossRef
21.
go back to reference C. M. Xiong, J. R. Sun, Y. F. Chen, B. G. Shen, J. Du, and Y. X. Li, “Relation between magnetic entropy and resistivity in La 0.67Ca 0.33MnO 3,” IEEE Trans. Magn. 41, 122–124 (2005). CrossRef C. M. Xiong, J. R. Sun, Y. F. Chen, B. G. Shen, J. Du, and Y. X. Li, “Relation between magnetic entropy and resistivity in La 0.67Ca 0.33MnO 3,” IEEE Trans. Magn. 41, 122–124 (2005). CrossRef
22.
go back to reference A. G. Gamzatov and A. B. Batdalov, “The relation between magnetoresistance and magnetocaloric effect in La 0.85Ag 0.15MnO 3 manganite,” Phys. B (Amsterdam) 406, 1902–1905 (2011). CrossRef A. G. Gamzatov and A. B. Batdalov, “The relation between magnetoresistance and magnetocaloric effect in La 0.85Ag 0.15MnO 3 manganite,” Phys. B (Amsterdam) 406, 1902–1905 (2011). CrossRef
23.
go back to reference A. G. Gamzatov, A. M. Aliev, P. D. H. Yen, L. Khanov, K. X. Hau, T. D. Thanh, N. T. Dung, and S.-C. Yu, “Correlation of the magnetocaloric effect and magnetostriction near the first-order phase transition in Pr 0.7Sr 0.2Ca 0.1MnO 3 manganite,” J. Appl. Phys. 124, 183902 (2018). CrossRef A. G. Gamzatov, A. M. Aliev, P. D. H. Yen, L. Khanov, K. X. Hau, T. D. Thanh, N. T. Dung, and S.-C. Yu, “Correlation of the magnetocaloric effect and magnetostriction near the first-order phase transition in Pr 0.7Sr 0.2Ca 0.1MnO 3 manganite,” J. Appl. Phys. 124, 183902 (2018). CrossRef
24.
go back to reference A. G. Gamzatov, A. B. Batdalov, A. M. Aliev, P. D. H. Yen, S. V. Gudina, V. N. Neverov, T. D. Thanh, N. T. Dung, S.-C. Yu, D.-H. Kim, and M. H. Phan, “Determination of the magnetocaloric effect from thermophysical parameters and their relationships near magnetic phase transition in doped manganites,” J. Magn. Magn. Mater. 513, 167209 (2020). CrossRef A. G. Gamzatov, A. B. Batdalov, A. M. Aliev, P. D. H. Yen, S. V. Gudina, V. N. Neverov, T. D. Thanh, N. T. Dung, S.-C. Yu, D.-H. Kim, and M. H. Phan, “Determination of the magnetocaloric effect from thermophysical parameters and their relationships near magnetic phase transition in doped manganites,” J. Magn. Magn. Mater. 513, 167209 (2020). CrossRef
25.
go back to reference T. Kasuya, “Electrical resistance of ferromagnetic metals,” Prog. Theor. Phys. 16, 58 (1956). CrossRef T. Kasuya, “Electrical resistance of ferromagnetic metals,” Prog. Theor. Phys. 16, 58 (1956). CrossRef
26.
go back to reference K. Kubo and N. Ohata, “A quantum theory of double exchange,” J. Phys. Soc. Jpn. 33, 21 (1972). CrossRef K. Kubo and N. Ohata, “A quantum theory of double exchange,” J. Phys. Soc. Jpn. 33, 21 (1972). CrossRef
Metadata
Title
Thermophysical and Magnetocaloric Properties of the LaFe11.1Mn0.1Co0.7Si1.1 Alloy
Authors
N. Z. Abdulkadirova
A. G. Gamzatov
A. M. Aliev
P. Gebara
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040020