Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2015 | OriginalPaper | Chapter

8. Thin Auxetic Plates and Shells

Author : Teik-Cheng Lim

Published in: Auxetic Materials and Structures

Publisher: Springer Singapore

Abstract

This chapter opens with a discussion on flexural rigidity of auxetic plates vis-à-vis conventional ones, followed by an analysis of circular auxetic plates. Bending moment result from uniform loading of circular plates suggests that the optimal Poisson’s ratio is −1/3 if the plate is simply-supported at the edge. Based on bending and twisting moment minimization on a rectangular plate under sinusoidal load, the optimal Poisson’s ratio for a square plate is 0, and this value reduces until −1 for a rectangular plate with aspect ratio 1 + √2. Auxetic materials are not suitable for uniformly loaded and simply supported square plates, as moment minimization study suggests an optimal Poisson’s ratio of 0.115, but are highly suitable for central point loaded and simply supported square plates, as moment minimization study suggests an optimal Poisson’s ratio of −1. In the study of auxetic plates on auxetic foundation, the plotted results suggest that, in addition to selecting materials of sufficient strength and mechanical designing of plate for reduced stressed concentration, the use of plate and/or foundation materials with negative Poisson’s ratio is useful for designing against failure. The investigations on width-constrained plates under uniaxial in-plane pressure by Strek et al. (J Non-Cryst Solids 354(35–39):4475–4480, 2008) and Pozniak et al. (Rev Adv Mat Sci 23(2):169–174, 2010) exhibit a remarkable and surprising result—at extreme negative Poisson’s ratios the displacement vector has components which are anti-parallel to the direction of loading. In the study of spherical shells under uniform load, the use of auxetic material reduces the ratio of maximum bending stress to the membrane stress, thereby implying that if the shell material possesses a Poisson’s ratio that is sufficiently negative, such as −1, and the boundary condition permits free rotation and lateral displacement, then the use of membrane theory of shell is sufficient even though the shell thickness is significant. Results also recommend the use of auxetic material for spherical shells with simple supports because the bending stress is significantly reduced. However the use of auxetic material as spherical shells, with built-in edge, is not recommended due to the sharp increase in the bending stress as the Poisson’s ratio of the shell material becomes more negative.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Literature
go back to reference Ghorpade SR, Limaye BV (2010) A course in multivariable calculus and analysis. Springer, New York CrossRefMATH Ghorpade SR, Limaye BV (2010) A course in multivariable calculus and analysis. Springer, New York CrossRefMATH
go back to reference Ho DT, Park SD, Kwon SY, Park K, Kim SY (2014) Negative Poisson’s ratio in metal nanoplates. Nat Commun 5:3255 Ho DT, Park SD, Kwon SY, Park K, Kim SY (2014) Negative Poisson’s ratio in metal nanoplates. Nat Commun 5:3255
go back to reference Lim TC (2013b) Optimal Poisson’s ratio for laterally loaded rectangular plates. IMechE J Mat Des Appl 227(2):111–123 Lim TC (2013b) Optimal Poisson’s ratio for laterally loaded rectangular plates. IMechE J Mat Des Appl 227(2):111–123
go back to reference Lim TC (2014a) Flexural rigidity of thin auxetic plates. Int J Appl Mech 6(2):1450012 CrossRef Lim TC (2014a) Flexural rigidity of thin auxetic plates. Int J Appl Mech 6(2):1450012 CrossRef
go back to reference Lim TC (2014b) Auxetic plates on auxetic foundation. Adv Mater Res 974:398–401 CrossRef Lim TC (2014b) Auxetic plates on auxetic foundation. Adv Mater Res 974:398–401 CrossRef
go back to reference Pozniak AA, Kaminski H, Kedziora P, Maruszewski B, Strek T, Wojciechowski KW (2010) Anomalous deformation of constrained auxetic square. Rev Adv Mat Sci 23(2):169–174 Pozniak AA, Kaminski H, Kedziora P, Maruszewski B, Strek T, Wojciechowski KW (2010) Anomalous deformation of constrained auxetic square. Rev Adv Mat Sci 23(2):169–174
go back to reference Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, New York Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, New York
go back to reference Strek T, Maruszewski B, Narojczyk, Wojciechowski KW (2008) Finite element analysis of auxetic plate deformation. J Non-Cryst Solids 354(35–39):4475–4480 CrossRef Strek T, Maruszewski B, Narojczyk, Wojciechowski KW (2008) Finite element analysis of auxetic plate deformation. J Non-Cryst Solids 354(35–39):4475–4480 CrossRef
go back to reference Timoshenko SP, Woinowsky-Krieger S (1964) Theory of plates and shells, 2nd edn. McGraw-Hill, New York Timoshenko SP, Woinowsky-Krieger S (1964) Theory of plates and shells, 2nd edn. McGraw-Hill, New York
go back to reference Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. Marcel Dekker, New York CrossRef Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. Marcel Dekker, New York CrossRef
go back to reference Woinowsky-Krieger S (1933) Der spannungszustand in dickey elastischen platen II (the state of stress in thick elastic plates—part 2). Ing Arch 4:305–331 CrossRef Woinowsky-Krieger S (1933) Der spannungszustand in dickey elastischen platen II (the state of stress in thick elastic plates—part 2). Ing Arch 4:305–331 CrossRef
Metadata
Title
Thin Auxetic Plates and Shells
Author
Teik-Cheng Lim
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-275-3_8

Premium Partners