Skip to main content
Top

2025 | OriginalPaper | Chapter

3. Thin-Film Flows: Classical Examples, Marangoni Motions, and Viscous Membranes

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides an in-depth exploration of thin-film flows, beginning with a historical overview of dimensional analysis and its applications to interfacial tension problems. It introduces classical examples, such as the bursting of soap films and the coalescence of drops, to illustrate the principles of dimensional reasoning. The text delves into the dynamics of thin-film flows, including the role of Marangoni motions and viscous membranes, and presents detailed analyses of specific phenomena, such as the drainage of films on vertical plates and the spreading of films due to surface tension variations. The chapter also discusses the governing equations for thin films with surfactants, highlighting the unique challenges and solutions associated with these complex systems. Through a combination of theoretical insights and practical examples, the chapter offers a comprehensive understanding of thin-film behaviors, making it an essential resource for advanced researchers and practitioners in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Footnotes
1
Recall that for steady, laminar flow in a circular tube of radius R and length \(\ell \), the pressure drop \(\Delta p\) versus flow rate Q relation is
$$\begin{aligned} Q=\frac{\pi }{8}\frac{R^4\Delta p}{\mu \ell }.\qquad (3.7) \end{aligned}$$
.
 
2
One common exception to this trend are strong electrolytes in water. For example, the surface tension of salt water increases with the concentration of salt as a consequence of the favorable interactions of the salt ions with the polar molecules of water.
 
Literature
go back to reference Avery, M. E. (2000). How it really happened. American Journal of Respiratory and Critical Care Medicine, 161, 1074–1075. Avery, M. E. (2000). How it really happened. American Journal of Respiratory and Critical Care Medicine, 161, 1074–1075.
go back to reference Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge University Press. Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge University Press.
go back to reference Bell, J. M., & Cameron, F. K. (1906). The flow of liquids through capillary spaces. The Journal of Physical Chemistry A, 10, 658–674. Bell, J. M., & Cameron, F. K. (1906). The flow of liquids through capillary spaces. The Journal of Physical Chemistry A, 10, 658–674.
go back to reference Block, N. O., Goldstein, J. S., & Block, M. J. (1959). The motion of bubbles in a vertical temperature gradient. Journal of Fluid Mechanics, 6, 350–356. Block, N. O., Goldstein, J. S., & Block, M. J. (1959). The motion of bubbles in a vertical temperature gradient. Journal of Fluid Mechanics, 6, 350–356.
go back to reference Boussinesq, M. (1913). Sur l’existence d’une viscosité superficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigue. Annales de chimie et de physique, 29, 349–357. Boussinesq, M. (1913). Sur l’existence d’une viscosité superficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigue. Annales de chimie et de physique, 29, 349–357.
go back to reference Bridgman, P. W. (1922). Dimensional analysis. Yale University Press. Bridgman, P. W. (1922). Dimensional analysis. Yale University Press.
go back to reference Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations. Physical Review, 4, 345–376. Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations. Physical Review,  4, 345–376.
go back to reference Camp, D. W., & Berg, J. C. (1987). The spreading of oil on water in the surface tension regime. Journal of Fluid Mechanics, 184, 445–462. Camp, D. W., & Berg, J. C. (1987). The spreading of oil on water in the surface tension regime. Journal of Fluid Mechanics, 184, 445–462.
go back to reference Charles, E., & Mason, S. G. (1960). The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. Journal of Colloid Science, 15, 105–122. Charles, E., & Mason, S. G. (1960). The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. Journal of Colloid Science, 15, 105–122.
go back to reference Comroe, J. H. Jr. (1977a). Premature science and immature lungs. Part I. Some premature discoveries. American Review of Respiratory Disease, 116, 127–135. Comroe, J. H. Jr. (1977a). Premature science and immature lungs. Part I. Some premature discoveries. American Review of Respiratory Disease, 116, 127–135.
go back to reference Comroe, J. H. Jr. (1977b). Premature science and immature lungs. Part II. Chemical warfare. American Review of Respiratory Disease, 116, 311–323. Comroe, J. H. Jr. (1977b). Premature science and immature lungs. Part II. Chemical warfare. American Review of Respiratory Disease,  116, 311–323.
go back to reference Craster, R. V., & Matar, O. K. (2009). Dynamics and stability of thin liquid films. Reviews of Modern Physics, 81, 1131–1198. Craster, R. V., & Matar, O. K. (2009). Dynamics and stability of thin liquid films. Reviews of Modern Physics, 81, 1131–1198.
go back to reference Culick, F. E. C. (1960). Comments on a ruptured soap film. Journal of Applied Physics, 31, 1128–1129. Culick, F. E. C. (1960). Comments on a ruptured soap film. Journal of Applied Physics, 31, 1128–1129.
go back to reference de Gennes, P. G., Quéré, D., & Brochard, F. (2004). Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. Springer. de Gennes, P. G., Quéré, D., & Brochard, F. (2004). Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. Springer.
go back to reference Duprat, C. (2022). Moisture in textiles. Annual Review of Fluid Mechanics, 54, 443–467. Duprat, C. (2022). Moisture in textiles. Annual Review of Fluid Mechanics, 54, 443–467.
go back to reference Dussaud, A. D., & Troian, S. M. (1998). Dynamics of spontaneous spreading with evaporation on a deep fluid layer. Physics of Fluids, 10, 23–38. Dussaud, A. D., & Troian, S. M. (1998). Dynamics of spontaneous spreading with evaporation on a deep fluid layer. Physics of Fluids, 10, 23–38.
go back to reference Evans, E., & Sackmann, E. (1988). Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate. Journal of Fluid Mechanics, 194, 553–561. Evans, E., & Sackmann, E. (1988). Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate. Journal of Fluid Mechanics, 194, 553–561.
go back to reference Gratton, J., & Minotti, F. (1990). Self-similar viscous gravity currents: phase-plane formalism. Journal of Fluid Mechanics, 210, 155–182. Gratton, J., & Minotti, F. (1990). Self-similar viscous gravity currents: phase-plane formalism. Journal of Fluid Mechanics, 210, 155–182.
go back to reference Hughes, B. D., Pailthorpe, B. A., & White, L. R. (2006). The translational and rotational drag on a cylinder moving in a membrane. Journal of Fluid Mechanics, 110, 349–372. Hughes, B. D., Pailthorpe, B. A., & White, L. R. (2006). The translational and rotational drag on a cylinder moving in a membrane. Journal of Fluid Mechanics, 110, 349–372.
go back to reference Huh, C., Inoue, M., & Mason, S. G. (1975). Unidirectional spreading of one liquid on the surface of another. The Canadian Journal of Chemical Engineering, 53, 367–371. Huh, C., Inoue, M., & Mason, S. G. (1975). Unidirectional spreading of one liquid on the surface of another. The Canadian Journal of Chemical Engineering, 53, 367–371.
go back to reference Huppert, H. E. (1982). The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. Journal of Fluid Mechanics, 121, 43–58. Huppert, H. E. (1982). The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. Journal of Fluid Mechanics, 121, 43–58.
go back to reference Jeffreys, H. (1930). The draining of a vertical plate. Mathematical Proceedings of the Cambridge Philosophical Society, 26, 204–205. Jeffreys, H. (1930). The draining of a vertical plate. Mathematical Proceedings of the Cambridge Philosophical Society, 26, 204–205.
go back to reference Jensen, O. E. (1993). Self-similar, surfactant-driven flows. Physics of Fluids, 6, 1084–1094. Jensen, O. E. (1993). Self-similar, surfactant-driven flows. Physics of Fluids, 6, 1084–1094.
go back to reference Jensen, O. E., & Grotberg, J. B. (1993). Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. Journal of Fluid Mechanics, 240, 259–288. Jensen, O. E., & Grotberg, J. B. (1993). Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. Journal of Fluid Mechanics, 240, 259–288.
go back to reference Joos, P., & van Hunsel, J. (1985). Spreading of aqueous surfactant solutions on organic liquids. Journal of Colloid and Interface Science, 106, 161–167. Joos, P., & van Hunsel, J. (1985). Spreading of aqueous surfactant solutions on organic liquids. Journal of Colloid and Interface Science, 106, 161–167.
go back to reference Leenaars, A. F. M., Huethorst, J. A. M., & Van Oekel, J. J. (1990). Marangoni drying: A new extremely clean drying process. Langmuir, 6, 1701–1703. Leenaars, A. F. M., Huethorst, J. A. M., & Van Oekel, J. J. (1990). Marangoni drying: A new extremely clean drying process. Langmuir, 6, 1701–1703.
go back to reference Manikantan, H., & Squires, T. M. (2020). Surfactant dynamics: hidden variables controlling fluid flows. Journal of Fluid Mechanics, 892, P1. Manikantan, H., & Squires, T. M. (2020). Surfactant dynamics: hidden variables controlling fluid flows. Journal of Fluid Mechanics, 892, P1.
go back to reference Marangoni, C. (1871). Ueber die ausbreitung der tropfen einer flüssigkeit auf der oberfläche einer anderen (on the expansion of a drop of fluid on the surface of another). Annual Review of Physical Chemistry, 219, 337–354. Marangoni, C. (1871). Ueber die ausbreitung der tropfen einer flüssigkeit auf der oberfläche einer anderen (on the expansion of a drop of fluid on the surface of another). Annual Review of Physical Chemistry, 219, 337–354.
go back to reference McCutchen, C. W. (1970). Surface films compacted by moving water: Demarcation lines reveal film edges. Science, 170, 61–64. McCutchen, C. W. (1970). Surface films compacted by moving water: Demarcation lines reveal film edges. Science, 170, 61–64.
go back to reference McKinley, G. H., & Renardy, M. (2011). Wolfgang von Ohnesorge. Physics of Fluids, 23, 127101. McKinley, G. H., & Renardy, M. (2011). Wolfgang von Ohnesorge. Physics of Fluids, 23, 127101.
go back to reference Moseley, H. N. (1880). Remarkable discovery of a murder in Bermuda. Nature, 170. Moseley, H. N. (1880). Remarkable discovery of a murder in Bermuda. Nature, 170.
go back to reference Oron, A., Davis, S. H., & Bankoff, S. G. (1997). Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69, 931–980. Oron, A., Davis, S. H., & Bankoff, S. G. (1997). Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69, 931–980.
go back to reference Pattle, R. E. (1959). Diffusion from an instantaneous point source with a concentration-dependent coefficient. The Quarterly Journal of Mechanics and Applied Mathematics, 12, 407–409. Pattle, R. E. (1959). Diffusion from an instantaneous point source with a concentration-dependent coefficient. The Quarterly Journal of Mechanics and Applied Mathematics, 12, 407–409.
go back to reference Pearson, J. R. A. (1958). On convection cells induced by surface tension. Journal of Fluid Mechanics, 4, 489–500. Pearson, J. R. A. (1958). On convection cells induced by surface tension. Journal of Fluid Mechanics, 4, 489–500.
go back to reference Peters, R., & Cherry, R. J. (1982). Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proceedings of the National Academy of Sciences, 79, 4317–4321. Peters, R., & Cherry, R. J. (1982). Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proceedings of the National Academy of Sciences, 79, 4317–4321.
go back to reference Rayleigh. (1915). The principle of similitude. Nature, 2368, 95:66–68. Rayleigh. (1915). The principle of similitude. Nature, 2368, 95:66–68.
go back to reference Redwan, N. A., & Yitam, Y. M. (2018). Unsteady flow of thin slender rivulets of a Newtonian fluid with strong surface-tension effect. In Proceedings of the International Conference on Mathematical Sciences and Technology (MathTech2018). Redwan, N. A., & Yitam, Y. M. (2018). Unsteady flow of thin slender rivulets of a Newtonian fluid with strong surface-tension effect. In Proceedings of the International Conference on Mathematical Sciences and Technology (MathTech2018).
go back to reference Reyssat, M., Courbin, L., Reyssat, E., & Stone, H. A. (2008). Imbibition in geometries with axial variations. Journal of Fluid Mechanics, 615, 335–344. Reyssat, M., Courbin, L., Reyssat, E., & Stone, H. A. (2008). Imbibition in geometries with axial variations. Journal of Fluid Mechanics, 615, 335–344.
go back to reference Richard, D., Clanet, C., & Quéré, D. (2002). Contact time of a bouncing drop. Nature, 417, 811. Richard, D., Clanet, C., & Quéré, D. (2002). Contact time of a bouncing drop. Nature, 417, 811.
go back to reference Saffman, P. G. (1976). Brownian motion in thin sheets of viscous fluid. Journal of Fluid Mechanics, 73, 593–602. Saffman, P. G. (1976). Brownian motion in thin sheets of viscous fluid. Journal of Fluid Mechanics, 73, 593–602.
go back to reference Saffman, P. G., & Delbrück, M. (1975). Brownian motion in biological membranes. Proceedings of the National Academy of Sciences, 72, 3111–3113. Saffman, P. G., & Delbrück, M. (1975). Brownian motion in biological membranes. Proceedings of the National Academy of Sciences, 72, 3111–3113.
go back to reference Savva, N., & Bush, J. W. M. (2009). Viscous sheet retraction. Journal of Fluid Mechanics, 626, 211–240. Savva, N., & Bush, J. W. M. (2009). Viscous sheet retraction. Journal of Fluid Mechanics, 626, 211–240.
go back to reference Schwartz, D., Knobler, C. M., & Bruinsma, R. (1994). Direct observation of Langmuir monolayer flow through a channel. Physical Review Letters, 73, 2841–2844. Schwartz, D., Knobler, C. M., & Bruinsma, R. (1994). Direct observation of Langmuir monolayer flow through a channel. Physical Review Letters, 73, 2841–2844.
go back to reference Scott, J. C. (1982). Flow beneath a stagnant film on water: the Reynolds ridge. Journal of Fluid Mechanics, 116, 283–296. Scott, J. C. (1982). Flow beneath a stagnant film on water: the Reynolds ridge. Journal of Fluid Mechanics, 116, 283–296.
go back to reference Scriven, L. E. (1960). Dynamics of a fluid interface: Equation of motion for newtonian surface fluids. Chemical Engineering Science, 12, 98–108. Scriven, L. E. (1960). Dynamics of a fluid interface: Equation of motion for newtonian surface fluids. Chemical Engineering Science, 12, 98–108.
go back to reference Scriven, L. E., & Sternling, C. V. (1960). The Marangoni effects. Nature, 4733, 186–188. Scriven, L. E., & Sternling, C. V. (1960). The Marangoni effects. Nature, 4733, 186–188.
go back to reference Shim, S., & Stone, H. A. (2017). Damped coalescence cascade of liquid drops. Physical Review Fluids, 2, 044001. Shim, S., & Stone, H. A. (2017). Damped coalescence cascade of liquid drops. Physical Review Fluids, 2, 044001.
go back to reference Sickert, M., Rondelez, F., & Stone, H. A. (2007). Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. EPL, 79, 66005. Sickert, M., Rondelez, F., & Stone, H. A. (2007). Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. EPL, 79, 66005.
go back to reference Smith, S. H. (1969). On initial value problems for the flow in a thin sheet of viscous liquid. ZAMP, 20, 556–560. Smith, S. H. (1969). On initial value problems for the flow in a thin sheet of viscous liquid. ZAMP, 20, 556–560.
go back to reference Stone, H. A. (1990). A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Physics of Fluids, 2, 111–112. Stone, H. A. (1990). A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Physics of Fluids, 2, 111–112.
go back to reference Stone, H. A. (1995). Fluid motion of monomolecular films in a channel flow geometry. Physics of Fluids, 7, 2931–2937. Stone, H. A. (1995). Fluid motion of monomolecular films in a channel flow geometry. Physics of Fluids, 7, 2931–2937.
go back to reference Stone, H. A. (2002). Partial differential equations in thin film flows in fluid dynamics: Spreading droplets and rivulets. In H. Berestycki & Y. Pomeau (Eds.), Nonlinear PDE’s in condensed matter and reactive flows (pp. 297–311). Springer Science and Business Media. Stone, H. A. (2002). Partial differential equations in thin film flows in fluid dynamics: Spreading droplets and rivulets. In H. Berestycki & Y. Pomeau (Eds.), Nonlinear PDE’s in condensed matter and reactive flows (pp. 297–311). Springer Science and Business Media.
go back to reference Stone, H. A. (2010). Interfaces: in fluid mechanics and across disciplines. Journal of Fluid Mechanics, 645, 1–25. Stone, H. A. (2010). Interfaces: in fluid mechanics and across disciplines. Journal of Fluid Mechanics, 645, 1–25.
go back to reference Stone, H. A., & Ajdari, A. (1998). Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. Journal of Fluid Mechanics, 369, 151–173. Stone, H. A., & Ajdari, A. (1998). Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. Journal of Fluid Mechanics, 369, 151–173.
go back to reference Stone, H. A., & Masoud, H. (2015). Mobility of membrane-trapped particles. Journal of Fluid Mechanics, 781, 494–505. Stone, H. A., & Masoud, H. (2015). Mobility of membrane-trapped particles. Journal of Fluid Mechanics, 781, 494–505.
go back to reference Stone, H. A., & McConnell, H. M. (1995). Lipid domain instabilities in monolayers overlying sublayers of finite depth. The Journal of Physical Chemistry A, 99, 13505–13508. Stone, H. A., & McConnell, H. M. (1995). Lipid domain instabilities in monolayers overlying sublayers of finite depth. The Journal of Physical Chemistry A, 99, 13505–13508.
go back to reference Tanner, L. H. (1980). The surface tension effect on the flow of liquid down vertical or inclined surfaces. Journal Physics D: Applied Physics, 13, 1633–1641. Tanner, L. H. (1980). The surface tension effect on the flow of liquid down vertical or inclined surfaces. Journal Physics D: Applied Physics, 13, 1633–1641.
go back to reference Taylor, G. I. (1959). The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proceedings of the Royal Society of London. Series A, 253, 313–321. Taylor, G. I. (1959). The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proceedings of the Royal Society of London. Series A,  253, 313–321.
go back to reference Thomson, J. (1855). XLII. on certain curious motions observable on the surfaces of wine and other alcoholic liquors. Philosophical Magazine, 10, 330–333. Thomson, J. (1855). XLII. on certain curious motions observable on the surfaces of wine and other alcoholic liquors. Philosophical Magazine, 10, 330–333.
go back to reference Thoroddsen, S. T. (2006). Droplet genealogy. Nature Physics, 2, 223–224. Thoroddsen, S. T. (2006). Droplet genealogy. Nature Physics, 2, 223–224.
go back to reference Thoroddsen, S. T., & Takehara, K. (2000). The coalescence cascade of a drop. Physics of Fluids, 12, 1265–1267. Thoroddsen, S. T., & Takehara, K. (2000). The coalescence cascade of a drop. Physics of Fluids, 12, 1265–1267.
go back to reference Warncke, A., Gharib, M., & Roesgen, T. (1996). Flow measurements near a Reynolds ridge. Journal of Fluids Engineering, 118, 621–624. Warncke, A., Gharib, M., & Roesgen, T. (1996). Flow measurements near a Reynolds ridge. Journal of Fluids Engineering, 118, 621–624.
go back to reference Wrobel, S. (2004). Bubbles, babies and biology: The story of surfactant. The FASEB Journal, 18, 1624e. Wrobel, S. (2004). Bubbles, babies and biology: The story of surfactant. The FASEB Journal, 18, 1624e.
go back to reference Xue, N. (2021). Gravity-induced flows: Buoyancy-driven Flows and Interfacial Thin-film Flows. Ph.D. thesis, Princeton University. Xue, N. (2021). Gravity-induced flows: Buoyancy-driven Flows and Interfacial Thin-film Flows. Ph.D. thesis, Princeton University.
go back to reference Xue, N., & Stone, H. A. (2020). Self-similar draining near a vertical edge. Physical Review Letters, 125, 064502. Xue, N., & Stone, H. A. (2020). Self-similar draining near a vertical edge. Physical Review Letters, 125, 064502.
go back to reference Xue, N., & Stone, H. A. (2022). Gravitational drainage on a vertical substrate of a narrow width. Physical Review Fluids, 7, 014011. Xue, N., & Stone, H. A. (2022). Gravitational drainage on a vertical substrate of a narrow width. Physical Review Fluids, 7, 014011.
go back to reference Yariv, E., Brandão, R., Siegel, M., & Stone, H. A. (2023). Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation. Journal of Fluid Mechanics, 977, A30. Yariv, E., Brandão, R., Siegel, M., & Stone, H. A. (2023). Motion of a disk embedded in a nearly inviscid Langmuir film. Part 1. Translation. Journal of Fluid Mechanics, 977, A30.
go back to reference Yitam, Y. M., Duffy, B. R., Wilson, S. K., & Hunt, R. (2011). Similarity solutions for unsteady gravity-driven slender rivulets. The Quarterly Journal of Mechanics and Applied Mathematics, 64, 455–480. Yitam, Y. M., Duffy, B. R., Wilson, S. K., & Hunt, R. (2011). Similarity solutions for unsteady gravity-driven slender rivulets. The Quarterly Journal of Mechanics and Applied Mathematics, 64, 455–480.
go back to reference Zasadzinski, J. A., Ding, J., Warriner, H. E., Bringezu, F., & Waring, A. J. (2001). The physics and physiology of lung surfactants. Current Opinion in Colloid and Interface Science, 6, 506–513. Zasadzinski, J. A., Ding, J., Warriner, H. E., Bringezu, F., & Waring, A. J. (2001). The physics and physiology of lung surfactants. Current Opinion in Colloid and Interface Science, 6, 506–513.
Metadata
Title
Thin-Film Flows: Classical Examples, Marangoni Motions, and Viscous Membranes
Author
Howard A. Stone
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78764-5_3

Premium Partners