Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Third Rank Properties

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Odd rank properties are, in Newnham’s words, null properties, meaning that they may vanish for certain point groups (like all centrosymmetric ones, see Sect. 3.​6). As a result, not all materials will display third rank properties. Also as a consequence of being of odd rank, the RS will consist of overlapping positive and negative lobes, as shown in Fig. 7.1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
And all directed spheres of Chap. 5.
 
2
The RQ for \(\underline{\underline{B}}\) is the indicatrix for the refractive index [1].
 
3
No difficulty should arise from the use of r and \(\underline{\underline{\underline{r}}}\) in the same equation. Although the literal symbol is the same, their tensorial rank makes it impossible to confuse them.
 
4
How would you write this shear stress without resorting to a specific reference frame?.
 
5
For example, trigonal class 32.
 
6
Which is not a normal stress in the conventional axes to which \({{\,\mathrm{str}\,}}(\underset{{{{\backsim }}}}{d})\) is referred.
 
7
Check that (7.6) has three mirror planes at \(\dfrac{2\pi }{3}\) to each other; find their position (their \(\varphi \) values).
 
8
Try and identify the remaining geometric elements (axes, planes, etc.) of symmetry that leave (7.10) invariant. How many elements of the symmetry group (individual geometric transformations, each represented by its \(\smash {\underset{{{{\backsim }}}}{L}}\)) do these geometric elements of symmetry generate?
 
9
For rigorous treatments of tensor decomposition see [25].
 
10
Because only one axis has to be oriented.
 
11
This is not the only possibility. Can you find another one?.
 
12
Can you find another two similar ways of constructing \(n_1n_2n_3\)?
 
13
You can think of \(\underline{P}\) as longitudinal, of \(\underset{{{{\backsim }}}}{d}\) as the upper half of a matrix like \(\underset{{{{\backsim }}}}{s}\) and then recall the block coupling (4.​35).
 
14
Check that for the example (7.17) the eigenvectors of: \(\underset{{{{\backsim }}}}{M}= \begin{bmatrix} 0&{}1&{}1\\ 1&{}0&{}1\\ 1&{}1&{}0 \end{bmatrix}\) form a basis in which \(d_{14}=d_{25}=d_{36}=0\). Is there anything special about this reference frame? What are the eigenvalues of \(\underset{{{{\backsim }}}}{M}\)?
 
Literature
1.
go back to reference Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013) Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013)
2.
go back to reference Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. 8(3), 633–671 (1970)CrossRef Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. 8(3), 633–671 (1970)CrossRef
3.
go back to reference Hamermesh, M.: Group Theory and its Application to Physical Problems. Dover Publications Inc., New York (2003) Hamermesh, M.: Group Theory and its Application to Physical Problems. Dover Publications Inc., New York (2003)
4.
go back to reference Jerphagnon, J.: Invariants of the third-rank cartesian tensor: optical nonlinear susceptibilities. Phys. Rev. B 2(4), 1091 (1970)CrossRef Jerphagnon, J.: Invariants of the third-rank cartesian tensor: optical nonlinear susceptibilities. Phys. Rev. B 2(4), 1091 (1970)CrossRef
5.
go back to reference Dinckal, C.: Orthonormal decomposition of third rank tensors and applications. In: Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2013, 3–5 July, 2013, London, UK, 139, vol. 144 (2013) Dinckal, C.: Orthonormal decomposition of third rank tensors and applications. In: Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2013, 3–5 July, 2013, London, UK, 139, vol. 144 (2013)
6.
go back to reference Norris, A.N.: Quadratic invariants of elastic moduli. Q. J. Mech. Appl. Math. 60(3), 367–389 (2007)CrossRef Norris, A.N.: Quadratic invariants of elastic moduli. Q. J. Mech. Appl. Math. 60(3), 367–389 (2007)CrossRef
7.
go back to reference Ahmad, F.: Invariants of a cartesian tensor of rank 3. Arch. Mech. 63(4), 383–392 (2011) Ahmad, F.: Invariants of a cartesian tensor of rank 3. Arch. Mech. 63(4), 383–392 (2011)
9.
go back to reference Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325(2), 1363–1377 (2007)CrossRef Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325(2), 1363–1377 (2007)CrossRef
Metadata
Title
Third Rank Properties
Authors
Manuel Laso
Nieves Jimeno
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40870-1_7

Premium Partners