Skip to main content
Top
Published in:

11-03-2024

Three-dimensional quantum-corrected Monte Carlo device simulator of n-FinFETs

Authors: C. S. Soares, G. F. Furtado, A. C. J. Rossetto, G. I. Wirth, D. Vasileska

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effective potential approach was successfully incorporated as a quantum correction to a Monte Carlo device simulator of n-FinFETs to take into account the electron quantum confinement. The electron line density calculated by the effective potential approach agrees very well with the one calculated by a 2D Schrödinger–Poisson solver. Next, the results for the drain current as a function of the gate and drain voltage obtained by the semiclassical and by the quantum-corrected Monte Carlo device simulator were compared. The quantum-corrected Monte Carlo device simulator properly models volume inversion, which reduces the impact of surface roughness scattering, thus improving the electron drift velocity. Additionally, the quantum correction allows the modeling of the reduction of electron density in the n-FinFETs channel due to the quantum-mechanical size quantization effect. This, in turn, leads to a reduction of the drain current.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
9.
go back to reference Colinge, J.-P.: FinFETs and Other Multi-gate Transistors. Springer, New York (2008)CrossRef Colinge, J.-P.: FinFETs and Other Multi-gate Transistors. Springer, New York (2008)CrossRef
12.
go back to reference Ferry, D., Akis, R., Vasileska, D.: Quantum effects in mosfets: use of an effective potential in 3d Monte Carlo simulation of ultra-short channel devices. In: International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No. 00CH37138). IEEE, pp. 287–290 (2000) Ferry, D., Akis, R., Vasileska, D.: Quantum effects in mosfets: use of an effective potential in 3d Monte Carlo simulation of ultra-short channel devices. In: International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No. 00CH37138). IEEE, pp. 287–290 (2000)
13.
go back to reference Ramey, S.M., Ferry, D.K.: Modeling of quantum effects in ultrasmall FD-SOI MOSFETs with effective potentials and three-dimensional Monte Carlo. Phys. B: Condensed Matter 314(1), 350–353 (2002). https://doi.org/10.1016/S0921-4526(01)01385-0. Proceedings of the Twelfth International Conference on Nonequilib rium Carrier Dynamics in Semiconductors Ramey, S.M., Ferry, D.K.: Modeling of quantum effects in ultrasmall FD-SOI MOSFETs with effective potentials and three-dimensional Monte Carlo. Phys. B: Condensed Matter 314(1), 350–353 (2002). https://​doi.​org/​10.​1016/​S0921-4526(01)01385-0. Proceedings of the Twelfth International Conference on Nonequilib rium Carrier Dynamics in Semiconductors
15.
16.
go back to reference Colinge, J.-P., Greer, J.C., Greer, J.: Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press, Cambridge (2016)CrossRef Colinge, J.-P., Greer, J.C., Greer, J.: Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press, Cambridge (2016)CrossRef
20.
go back to reference A.U. Manual: Silvaco tcad. Santa Clara, CA, USA (2010) A.U. Manual: Silvaco tcad. Santa Clara, CA, USA (2010)
21.
go back to reference S.D.M.C.U. Guide: Sentaurus Device Monte Carlo User Guide. Synopsys (2013) S.D.M.C.U. Guide: Sentaurus Device Monte Carlo User Guide. Synopsys (2013)
24.
go back to reference Iannaccone, G., Curatola, G., Fiori, G.: Effective Bohm Quantum Potential for device simulators based on drift-diffusion and energy transport. In: Wachutka, G., Schrag, G. (eds.) Simulation of Semiconductor Processes and Devices 2004, pp. 275–278. Springer, Vienna (2004). https://doi.org/10.1007/978-3-7091-0624-2_64 Iannaccone, G., Curatola, G., Fiori, G.: Effective Bohm Quantum Potential for device simulators based on drift-diffusion and energy transport. In: Wachutka, G., Schrag, G. (eds.) Simulation of Semiconductor Processes and Devices 2004, pp. 275–278. Springer, Vienna (2004). https://​doi.​org/​10.​1007/​978-3-7091-0624-2_​64
28.
go back to reference Soffer, S.B.: Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38(4), 1710–1715 (1967)CrossRef Soffer, S.B.: Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38(4), 1710–1715 (1967)CrossRef
30.
go back to reference Boriçi, M., Watling, J., Wilkins, R., Yang, L., Barker, J.: A non perturbative model of surface roughness scattering for monte carlo simulation of relaxed silicon n-mosfets. J. Comput. Electron. 2, 163–167 (2003)CrossRef Boriçi, M., Watling, J., Wilkins, R., Yang, L., Barker, J.: A non perturbative model of surface roughness scattering for monte carlo simulation of relaxed silicon n-mosfets. J. Comput. Electron. 2, 163–167 (2003)CrossRef
31.
go back to reference Watling, J.R., Yang, L., Boriçi, M., Wilkins, R.C.W., Asenov, A., Barker, J.R., Roy, S.: The impact of interface roughness scattering and degeneracy in relaxed and strained si n-channel mosfets. Solid-State Electron. 48(8), 1337–1346 (2004). https://doi.org/10.1016/j.sse.2004.01.015. Strained-Si Heterostructures and Devices Watling, J.R., Yang, L., Boriçi, M., Wilkins, R.C.W., Asenov, A., Barker, J.R., Roy, S.: The impact of interface roughness scattering and degeneracy in relaxed and strained si n-channel mosfets. Solid-State Electron. 48(8), 1337–1346 (2004). https://​doi.​org/​10.​1016/​j.​sse.​2004.​01.​015. Strained-Si Heterostructures and Devices
33.
go back to reference Goodnick, S., Gann, R., Sites, J., Ferry, D.K., Wilmsen, C., Fathy, D., Krivanek, O.: Surface roughness scattering at the si-sio2 interface. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1(3), 803–808 (1983)CrossRef Goodnick, S., Gann, R., Sites, J., Ferry, D.K., Wilmsen, C., Fathy, D., Krivanek, O.: Surface roughness scattering at the si-sio2 interface. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1(3), 803–808 (1983)CrossRef
36.
go back to reference Bufler, F., Schenk, A., Fichtner, W.: Efficient Monte Carlo device modeling. IEEE Trans. Electron Devices 47(10), 1891–1897 (2000)CrossRef Bufler, F., Schenk, A., Fichtner, W.: Efficient Monte Carlo device modeling. IEEE Trans. Electron Devices 47(10), 1891–1897 (2000)CrossRef
37.
go back to reference Laux, S., Fischetti, M.: Monte Carlo study of velocity overshoot in switching a 0.1-micron cmos inverter. In: International Electron Devices Meeting. IEDM Technical Digest, pp. 877–880. IEEE (1997) Laux, S., Fischetti, M.: Monte Carlo study of velocity overshoot in switching a 0.1-micron cmos inverter. In: International Electron Devices Meeting. IEDM Technical Digest, pp. 877–880. IEEE (1997)
39.
go back to reference Bufler, F., Heinz, F., Smith, L.: Efficient 3d Monte Carlo simulation of orientation and stress effects in finfets. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 172–175. IEEE (2013) Bufler, F., Heinz, F., Smith, L.: Efficient 3d Monte Carlo simulation of orientation and stress effects in finfets. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 172–175. IEEE (2013)
40.
go back to reference Bufler, F.M., Ritzenthaler, R., Mertens, H., Eneman, G., Mocuta, A., Horiguchi, N.: Performance comparison of n-type si nanowires, nanosheets, and finfets by mc device simulation. IEEE Electron Device Lett. 39(11), 1628–1631 (2018)CrossRef Bufler, F.M., Ritzenthaler, R., Mertens, H., Eneman, G., Mocuta, A., Horiguchi, N.: Performance comparison of n-type si nanowires, nanosheets, and finfets by mc device simulation. IEEE Electron Device Lett. 39(11), 1628–1631 (2018)CrossRef
42.
go back to reference Wang, J., Polizzi, E., Ghosh, A., Datta, S., Lundstrom, M.: Theoretical investigation of surface roughness scattering in silicon nanowire transistors. Appl. Phys. Lett. 87(4), 043101 (2005)CrossRef Wang, J., Polizzi, E., Ghosh, A., Datta, S., Lundstrom, M.: Theoretical investigation of surface roughness scattering in silicon nanowire transistors. Appl. Phys. Lett. 87(4), 043101 (2005)CrossRef
43.
go back to reference Gamiz, F., Fischetti, M.: Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: the role of volume inversion. J. Appl. Phys. 89(10), 5478–5487 (2001)CrossRef Gamiz, F., Fischetti, M.: Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: the role of volume inversion. J. Appl. Phys. 89(10), 5478–5487 (2001)CrossRef
Metadata
Title
Three-dimensional quantum-corrected Monte Carlo device simulator of n-FinFETs
Authors
C. S. Soares
G. F. Furtado
A. C. J. Rossetto
G. I. Wirth
D. Vasileska
Publication date
11-03-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02145-w