Skip to main content
Top
Published in: Journal of Visualization 4/2020

07-05-2020 | Regular Paper

Three-dimensional visualization of columnar vortices in rotating Rayleigh–Bénard convection

Authors: Kodai Fujita, Yuji Tasaka, Takatoshi Yanagisawa, Daisuke Noto, Yuichi Murai

Published in: Journal of Visualization | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

 To enrich the three-dimensional experimental details of vortex structures in rotating Rayleigh–Bénard convection, we established a technique visualizing three-dimensional vortex structures using scanning planar particle image velocimetry. Experiments were performed at fixed Rayleigh number, \(\hbox {Ra} = 1.0 \times 10^7\) and different Taylor numbers from \(\hbox {Ta} = 6.0 \times 10^6\) to \(1.0 \times 10^8\), corresponding to convective Rossby numbers from \(0.1 \le \hbox {Ro} \le 0.5\) at which gradual transition between vortical plumes and convective Taylor columns regime is observed. Stream function distributions calculated from horizontal velocity vector fields visualize the vortex structure formed in the regimes. As quantitative information extracted from the visualized structures, distances between vortices recognized on the distributions show a good agreement with that evaluated by a theory. With the accumulated planar stream function distributions and vertical velocity component calculated from the horizontal velocity vectors, the three-dimensional representations of vortices indicate that quasi-two-dimensional columnar vortices straighten in the vertical direction with increasing Ta.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Cerisier P, Perez-Garcia C, Jamond C, Pantaloni J (1987) Wavelength selection in Bénard-Marangoni convection. Phys Rev A 35:1949CrossRef Cerisier P, Perez-Garcia C, Jamond C, Pantaloni J (1987) Wavelength selection in Bénard-Marangoni convection. Phys Rev A 35:1949CrossRef
go back to reference Cheng JS, Stellmach S, Ribeiro A, Grannan A, King EM, Aurnou JM (2015) Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys J Int 201:1–17CrossRef Cheng JS, Stellmach S, Ribeiro A, Grannan A, King EM, Aurnou JM (2015) Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys J Int 201:1–17CrossRef
go back to reference Cheng JS, Aurnou JM, Julien K, Kunnen RPJ (2018) A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys Astro Fluid 112(4):277–300CrossRef Cheng JS, Aurnou JM, Julien K, Kunnen RPJ (2018) A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys Astro Fluid 112(4):277–300CrossRef
go back to reference Greenspan HP (1968) The theory of rotating fluids. CUP Archive, CambridgeMATH Greenspan HP (1968) The theory of rotating fluids. CUP Archive, CambridgeMATH
go back to reference Julien K, Legg S, McWilliams J, Werne J (1996) Rapidly rotating turbulent Rayleigh–Bénard convection. J Fluid Mech 322:243–273CrossRef Julien K, Legg S, McWilliams J, Werne J (1996) Rapidly rotating turbulent Rayleigh–Bénard convection. J Fluid Mech 322:243–273CrossRef
go back to reference Julien K, Rubio AM, Grooms I, Knobloch E (2012) Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys Astro Fluid 106:392–428CrossRef Julien K, Rubio AM, Grooms I, Knobloch E (2012) Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys Astro Fluid 106:392–428CrossRef
go back to reference Kunnen RPJ, Clercx HJH, Geurts BJ (2008) Breakdown of large-scale circulation in turbulent rotating convection. Europhys Lett 84:24001CrossRef Kunnen RPJ, Clercx HJH, Geurts BJ (2008) Breakdown of large-scale circulation in turbulent rotating convection. Europhys Lett 84:24001CrossRef
go back to reference Liu Y, Ecke RE (2009) Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys Rev E 80:036314CrossRef Liu Y, Ecke RE (2009) Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys Rev E 80:036314CrossRef
go back to reference Mazzoni S, Giavazzi F, Cerbino R, Giglio M, Vailati A (2008) Mutual Voronoi tessellation in spoke pattern convection. Phys Rev Lett 100:188104CrossRef Mazzoni S, Giavazzi F, Cerbino R, Giglio M, Vailati A (2008) Mutual Voronoi tessellation in spoke pattern convection. Phys Rev Lett 100:188104CrossRef
go back to reference Noto D, Tasaka Y, Yanagisawa T, Park HJ, Murai Y (2018) Vortex tracking on visualized temperature fields in a rotating Rayleigh–Bénard convection. J Vis 6:987–998CrossRef Noto D, Tasaka Y, Yanagisawa T, Park HJ, Murai Y (2018) Vortex tracking on visualized temperature fields in a rotating Rayleigh–Bénard convection. J Vis 6:987–998CrossRef
go back to reference Noto D, Tasaka Y, Yanagisawa T, Murai Y (2019) Horizontal diffusive motion of columnar vortices in rotating Rayleigh–Bénard convection. J Fluid Mech 871:401–426MathSciNetCrossRef Noto D, Tasaka Y, Yanagisawa T, Murai Y (2019) Horizontal diffusive motion of columnar vortices in rotating Rayleigh–Bénard convection. J Fluid Mech 871:401–426MathSciNetCrossRef
go back to reference Rajaei H, Kunnen RPJ, Clercx HJH (2017) Exploring the geostrophic regime of rapidly rotating convection with experiments. Phys Fluids 29(4):045105CrossRef Rajaei H, Kunnen RPJ, Clercx HJH (2017) Exploring the geostrophic regime of rapidly rotating convection with experiments. Phys Fluids 29(4):045105CrossRef
go back to reference Sakai S (1997) The horizontal scale of rotating convection in the geostrophic regime. J Fluid Mech 333:85–95CrossRef Sakai S (1997) The horizontal scale of rotating convection in the geostrophic regime. J Fluid Mech 333:85–95CrossRef
go back to reference Stellmach S, Lischper M, Julien K, Vasil G, Cheng JS, Ribeiro A, King EM, Aurnou JM (2014) Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys Rev Lett 113:254501CrossRef Stellmach S, Lischper M, Julien K, Vasil G, Cheng JS, Ribeiro A, King EM, Aurnou JM (2014) Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys Rev Lett 113:254501CrossRef
go back to reference Stevens RJAM, Zhong JQ, Clercx HJH, Alhers G, Lohse D (2009) Transition between turbulent states in rotating Rayleigh–Bénard convection. Phys Rev Lett 103:024503CrossRef Stevens RJAM, Zhong JQ, Clercx HJH, Alhers G, Lohse D (2009) Transition between turbulent states in rotating Rayleigh–Bénard convection. Phys Rev Lett 103:024503CrossRef
go back to reference Stevens RJAM, Overkamp J, Lohse D, Clercx HJH (2011) Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh–Bénard convection. Phys Rev E 84:056313CrossRef Stevens RJAM, Overkamp J, Lohse D, Clercx HJH (2011) Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh–Bénard convection. Phys Rev E 84:056313CrossRef
go back to reference Stevens RJAM, Clercx HJH, Lohse D (2013) Heat transport and flow structure in rotating Rayleigh–Bénard convection. Euro J Mech B/Fluids 40:41–49CrossRef Stevens RJAM, Clercx HJH, Lohse D (2013) Heat transport and flow structure in rotating Rayleigh–Bénard convection. Euro J Mech B/Fluids 40:41–49CrossRef
go back to reference Takehara K, Etoh T (1999) A study on particle identification in PTV particle mask correlation method. J Vis 1:313–323CrossRef Takehara K, Etoh T (1999) A study on particle identification in PTV particle mask correlation method. J Vis 1:313–323CrossRef
go back to reference Trouette B, Chénier E, Delcarte C, Guerrier B (2011) Numerical study of convection induced by evaporation in cylindrical geometry. Euro Phys J Spec Top 192:83–93CrossRef Trouette B, Chénier E, Delcarte C, Guerrier B (2011) Numerical study of convection induced by evaporation in cylindrical geometry. Euro Phys J Spec Top 192:83–93CrossRef
go back to reference Ushijima S, Tanaka N (1996) Three-dimensional particle tracking velocimetry with laser-light sheet scannings. Trans ASME J Fluids Eng 118:352–357CrossRef Ushijima S, Tanaka N (1996) Three-dimensional particle tracking velocimetry with laser-light sheet scannings. Trans ASME J Fluids Eng 118:352–357CrossRef
go back to reference Vorobieff P, Ecke RE (2002) Turbulent rotating convection: an experimental study. J Fluid Mech 458:191–218CrossRef Vorobieff P, Ecke RE (2002) Turbulent rotating convection: an experimental study. J Fluid Mech 458:191–218CrossRef
go back to reference Watamura T, Tasaka Y, Murai Y (2013) Intensified and attenuated waves in a microbubble Taylor–Couette flow. Phys Fluids 25(5):054107CrossRef Watamura T, Tasaka Y, Murai Y (2013) Intensified and attenuated waves in a microbubble Taylor–Couette flow. Phys Fluids 25(5):054107CrossRef
go back to reference Weiss S, Ahlers G (2011) Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio. J Fluid Mech 309:1–20MATH Weiss S, Ahlers G (2011) Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio. J Fluid Mech 309:1–20MATH
go back to reference Zhong F, Ecke RE, Steinberg V (1993) Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J Fluid Mech 249:135–159CrossRef Zhong F, Ecke RE, Steinberg V (1993) Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J Fluid Mech 249:135–159CrossRef
Metadata
Title
Three-dimensional visualization of columnar vortices in rotating Rayleigh–Bénard convection
Authors
Kodai Fujita
Yuji Tasaka
Takatoshi Yanagisawa
Daisuke Noto
Yuichi Murai
Publication date
07-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Visualization / Issue 4/2020
Print ISSN: 1343-8875
Electronic ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00651-0

Other articles of this Issue 4/2020

Journal of Visualization 4/2020 Go to the issue

Premium Partner