Skip to main content
Top
Published in: Journal of Visualization 3/2020

19-03-2020 | Regular Paper

Three-dimensional visualization of stratified turbulent wakes at varying Reynolds number

Authors: B. Halawa, S. Merhi, C. Tang, Q. Zhou

Published in: Journal of Visualization | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a series of three-dimensional visualizations of numerically simulated turbulent wakes in a stably stratified fluid with a focus on the effects of the wake Reynolds number, Re, on the wake flow. The visualization of stratified wakes is complicated by the coexistence of regions of distinct dynamics in the flow, including large-scale ‘pancake vortices,’ small-scale shear instabilities within layers of concentrated vertical shear, and internal waves emitted by the wake flow to the ambient fluid. We apply various techniques to identify dynamically distinct regions within the wake flow and visualize them separately. The volume fractions occupied by each of these regions are also quantified. Through the visualizations, we observe three significant effects on the wake’s evolution associated with increasing wake Reynolds number: (1) nontrivial modifications to the structure of the pancake vortices, (2) prolongation of the period of internal wave emission from the wake, and (3) greater longevity of small-scale shear instabilities within the anisotropic flow structures. These observations reveal a trend in Re that can potentially be extrapolated to stratified wakes at even larger Reynolds numbers that are typical of geophysical wakes and currently not accessible to laboratory experiments or numerical simulations.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
It is perhaps worth noting that the calculation of PV requires the gradients of all velocity components and density simultaneously which is typically difficult to achieve in experiments. In stratified wake experiments [e.g., Spedding (1997)], the vertical component of vorticity, \(\omega _z\), is typically calculated to visualize vortical motions.
 
2
Here and in Watanabe et al. (2016), \(\langle . \rangle \) indicates an average along the centerline of the R100 wake at \(Nt=21\).
 
Literature
go back to reference Abdilghanie AM, Diamessis PJ (2013) The internal gravity wave field emitted by a stably stratified turbulent wake. J Fluid Mech 720:104–139CrossRef Abdilghanie AM, Diamessis PJ (2013) The internal gravity wave field emitted by a stably stratified turbulent wake. J Fluid Mech 720:104–139CrossRef
go back to reference Brethouwer G, Billant P, Lindborg E, Chomaz JM (2007) Scaling analysis and simulation of strongly stratified turbulent flows. J Fluid Mech 585:343–368MathSciNetCrossRef Brethouwer G, Billant P, Lindborg E, Chomaz JM (2007) Scaling analysis and simulation of strongly stratified turbulent flows. J Fluid Mech 585:343–368MathSciNetCrossRef
go back to reference Brucker KA, Sarkar S (2010) A comparative study of self-propelled and towed wakes in a stratified fluid. J Fluid Mech 652:373–404CrossRef Brucker KA, Sarkar S (2010) A comparative study of self-propelled and towed wakes in a stratified fluid. J Fluid Mech 652:373–404CrossRef
go back to reference Clyne J, Rast M (2005) A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. Electron Imaging 2005:284–294 Clyne J, Rast M (2005) A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. Electron Imaging 2005:284–294
go back to reference Clyne J, Mininni P, Norton A, Rast M (2007) Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J Phys 9:301CrossRef Clyne J, Mininni P, Norton A, Rast M (2007) Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J Phys 9:301CrossRef
go back to reference de Stadler MB, Sarkar S (2012) Simulation of a propelled wake with moderate excess momentum in a stratified fluid. J Fluid Mech 692:28–52CrossRef de Stadler MB, Sarkar S (2012) Simulation of a propelled wake with moderate excess momentum in a stratified fluid. J Fluid Mech 692:28–52CrossRef
go back to reference Deusebio E, Caulfield CP, Taylor JR (2015) The intermittency boundary in stratified plane couette flow. J Fluid Mech 781:298–329MathSciNetCrossRef Deusebio E, Caulfield CP, Taylor JR (2015) The intermittency boundary in stratified plane couette flow. J Fluid Mech 781:298–329MathSciNetCrossRef
go back to reference Diamessis PJ, Domaradzki JA, Hesthaven JS (2005) A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence. J Comput Phys 202:298–322MathSciNetCrossRef Diamessis PJ, Domaradzki JA, Hesthaven JS (2005) A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence. J Comput Phys 202:298–322MathSciNetCrossRef
go back to reference Diamessis PJ, Spedding GR, Domaradzki JA (2011) Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J Fluid Mech 671:52–95MathSciNetCrossRef Diamessis PJ, Spedding GR, Domaradzki JA (2011) Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J Fluid Mech 671:52–95MathSciNetCrossRef
go back to reference Dommermuth DG, Rottman JW, Innis GE, Novikov EA (2002) Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J Fluid Mech 473:83–101CrossRef Dommermuth DG, Rottman JW, Innis GE, Novikov EA (2002) Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J Fluid Mech 473:83–101CrossRef
go back to reference Gourlay MJ, Arendt SC, Fritts DC, Werne J (2001) Numerical modeling of initially turbulent wakes with net momentum. Phys Fluids 13:3783–3802CrossRef Gourlay MJ, Arendt SC, Fritts DC, Werne J (2001) Numerical modeling of initially turbulent wakes with net momentum. Phys Fluids 13:3783–3802CrossRef
go back to reference Lilly DK (1983) Stratified turbulence and the mesoscale variability of the atmosphere. J Atoms Sci 40:749–761CrossRef Lilly DK (1983) Stratified turbulence and the mesoscale variability of the atmosphere. J Atoms Sci 40:749–761CrossRef
go back to reference Lin JT, Pao YH (1979) Wakes in stratified fluids. Ann Rev Fluid Mech 11:317–338CrossRef Lin JT, Pao YH (1979) Wakes in stratified fluids. Ann Rev Fluid Mech 11:317–338CrossRef
go back to reference Meunier P (2010) Shadowgraph visualisation of 3D instability in a stratified cylinder wake. J Vis 13:271–272CrossRef Meunier P (2010) Shadowgraph visualisation of 3D instability in a stratified cylinder wake. J Vis 13:271–272CrossRef
go back to reference Orr TS, Domaradzki JA, Spedding GR, Constantinescu GS (2015) Numerical simulations of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at Re = 1000. Phys Fluids 27:035113CrossRef Orr TS, Domaradzki JA, Spedding GR, Constantinescu GS (2015) Numerical simulations of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at Re = 1000. Phys Fluids 27:035113CrossRef
go back to reference Orszag SA, Pao YH (1975) Numerical computation of turbulent shear flows. Adv Geophys 18:225–236CrossRef Orszag SA, Pao YH (1975) Numerical computation of turbulent shear flows. Adv Geophys 18:225–236CrossRef
go back to reference Pal A, Sarkar S, Posa A, Balaras E (2017) Direct numerical simulation of stratified flow past a sphere at a subcritical Reynolds number of 3700 and moderate Froude number. J Fluid Mech 826:5–31MathSciNetCrossRef Pal A, Sarkar S, Posa A, Balaras E (2017) Direct numerical simulation of stratified flow past a sphere at a subcritical Reynolds number of 3700 and moderate Froude number. J Fluid Mech 826:5–31MathSciNetCrossRef
go back to reference Portwood GD, de Bruyn Kops SM, Taylor JR, Salehipour H, Caulfield CP (2016) Robust identification of dynamically distinct regions in stratified turbulence. J Fluid Mech 807:R2MathSciNetCrossRef Portwood GD, de Bruyn Kops SM, Taylor JR, Salehipour H, Caulfield CP (2016) Robust identification of dynamically distinct regions in stratified turbulence. J Fluid Mech 807:R2MathSciNetCrossRef
go back to reference Redford JA, Lund TS, Coleman GN (2015) A numerical study of a weakly stratified turbulent wake. J Fluid Mech 776:568–609CrossRef Redford JA, Lund TS, Coleman GN (2015) A numerical study of a weakly stratified turbulent wake. J Fluid Mech 776:568–609CrossRef
go back to reference Riley JJ, Lindborg E (2012) Recent progress in stratified turbulence. In: Davidson PA, Kaneda Y, Sreenivasan KR (eds) Ten chapters in turbulence. Cambridge University Press, Cambridge, pp 269–317CrossRef Riley JJ, Lindborg E (2012) Recent progress in stratified turbulence. In: Davidson PA, Kaneda Y, Sreenivasan KR (eds) Ten chapters in turbulence. Cambridge University Press, Cambridge, pp 269–317CrossRef
go back to reference Riley JJ, Metcalfe RW, Weissman MA (1981) Direct numerical simulations of homogeneous turbulence in density-stratified fluids. In: West JB (ed) AIP conference proceedings on nonlinear properties of internal waves, American Institute of Physics, pp 79–112 Riley JJ, Metcalfe RW, Weissman MA (1981) Direct numerical simulations of homogeneous turbulence in density-stratified fluids. In: West JB (ed) AIP conference proceedings on nonlinear properties of internal waves, American Institute of Physics, pp 79–112
go back to reference Spedding GR (1997) The evolution of initially turbulent bluff-body wakes at high internal Froude number. J Fluid Mech 337:283–301CrossRef Spedding GR (1997) The evolution of initially turbulent bluff-body wakes at high internal Froude number. J Fluid Mech 337:283–301CrossRef
go back to reference Spedding GR, Browand FK, Fincham AM (1996) Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluids. J Fluid Mech 314:53–103CrossRef Spedding GR, Browand FK, Fincham AM (1996) Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluids. J Fluid Mech 314:53–103CrossRef
go back to reference Thorpe SA (2005) The turbulent ocean. Cambridge University Press, CambridgeCrossRef Thorpe SA (2005) The turbulent ocean. Cambridge University Press, CambridgeCrossRef
go back to reference Watanabe T, Riley JJ, de Bruyn Kops SM, Diamessis PJ, Zhou Q (2016) Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J Fluid Mech 797:R1MathSciNetCrossRef Watanabe T, Riley JJ, de Bruyn Kops SM, Diamessis PJ, Zhou Q (2016) Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J Fluid Mech 797:R1MathSciNetCrossRef
go back to reference Zhou Q (2015) Far-field evolution of turbulence-emitted internal waves and Reynolds number effects on a localized stratified turbulent flow. PhD thesis, Cornell University, Ithaca, New York Zhou Q (2015) Far-field evolution of turbulence-emitted internal waves and Reynolds number effects on a localized stratified turbulent flow. PhD thesis, Cornell University, Ithaca, New York
go back to reference Zhou Q, Diamessis PJ (2016) Surface manifestation of internal waves emitted by submerged localized stratified turbulence. J Fluid Mech 798:505–539MathSciNetCrossRef Zhou Q, Diamessis PJ (2016) Surface manifestation of internal waves emitted by submerged localized stratified turbulence. J Fluid Mech 798:505–539MathSciNetCrossRef
go back to reference Zhou Q, Diamessis PJ (2019) Large-scale characteristics of stratified wake turbulence at varying Reynolds number. Phys Rev Fluids 4:084802CrossRef Zhou Q, Diamessis PJ (2019) Large-scale characteristics of stratified wake turbulence at varying Reynolds number. Phys Rev Fluids 4:084802CrossRef
Metadata
Title
Three-dimensional visualization of stratified turbulent wakes at varying Reynolds number
Authors
B. Halawa
S. Merhi
C. Tang
Q. Zhou
Publication date
19-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Visualization / Issue 3/2020
Print ISSN: 1343-8875
Electronic ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00638-x

Other articles of this Issue 3/2020

Journal of Visualization 3/2020 Go to the issue

Premium Partner