Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-03-2020 | Original Article | Issue 5/2020

International Journal of Machine Learning and Cybernetics 5/2020

Three-way active learning through clustering selection

Journal:
International Journal of Machine Learning and Cybernetics > Issue 5/2020
Authors:
Fan Min, Shi-Ming Zhang, Davide Ciucci, Min Wang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In clustering-based active learning, the performance of the learner relies heavily on the quality of clustering results. Empirical studies have shown that different clustering techniques are applicable to different data. In this paper, we propose the three-way active learning through clustering selection (TACS) algorithm to dynamically select the appropriate techniques during the learning process. The algorithm follows the coarse-to-fine scheme of granular computing coupled with three-way instance processing. For label query, we select both representative instances with density peaks, and informative instances with the maximal total distance. For block partition, we revise six popular clustering techniques to speed up learning and accommodate binary splitting. For clustering evaluation, we define weighted entropy with 1-nearest-neighbor. For insufficient labels, we design tree pruning techniques with the use of a block queue. Experiments are undertaken on twelve UCI datasets. The results show that TACS is superior to single clustering technique based algorithms and other state-of-the-art active learning algorithms.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5/2020

International Journal of Machine Learning and Cybernetics 5/2020 Go to the issue