Skip to main content
Top
Published in:

30-08-2024

TiCoSb Heusler alloy-based magnetic tunnel junction for efficient computing in memory architecture

Authors: P. B. Alisha, Tripti S. Warrier

Published in: Journal of Computational Electronics | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computing in memory (CiM) architecture enables computation within the memory array, reducing power-intensive data transmission between the processor and memory. The primary goal of this work is to enhance the energy efficiency of CiM architectures that use spintronic devices. Experiments show that the thermal stability (\(\Delta\)) in magnetic tunnel junctions (MTJs) can be optimized to reduce write energy by adjusting the oxide layer thickness. Based on this finding, this work explores a novel spin-orbit torque random-access memory (SOT) cell that yields a 30% increase in energy efficiency compared to conventional SOT. However, reducing the oxide layer thickness below 1.5 nm to tune \(\Delta\) leads to a decrease in the tunnel magnetoresistance (TMR) ratio leading to reliability concerns. The second part of the work proposes to improve TMR by replacing the conventional MgO oxide layer with a TiCoSb Heusler alloy-based layer and utilizing \(\hbox {Co}_{2}\hbox {MnSb}\) as the electrode in the modified cell called \(\Delta\)M-SOT. Theoretical and experimental studies demonstrate that this alternative MTJ design exhibits TMR ratios comparable to values reported in the literature. The performance of magnetic full adder CiM design using the proposed \(\Delta\)M-SOT is compared with designs implemented using CMOS, spin-transfer torque random-access RAM (STT), and conventional SOT. Evaluations show that the \(\Delta\)M-SOT-CiM has a reduction of 66% and 30% in logic and data transfer energy, respectively, compared to conventional SOT-CiM design. Furthermore, the data storage and computation operations in \(\Delta\)M-SOT-CiM are found to be significantly faster compared to both STT- and SOT-CiM design. Overall, this work presents a promising SOT design that effectively bridges the gap between the processor and memory by enabling logical functions within memory, eliminating the need for additional circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, M., Chen, L.-Y., Zhang, B., Deaville, P.: In-memory computing: advances and prospects. IEEE Solid-State Circuits Mag. 11(3), 43–55 (2019)CrossRef Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, M., Chen, L.-Y., Zhang, B., Deaville, P.: In-memory computing: advances and prospects. IEEE Solid-State Circuits Mag. 11(3), 43–55 (2019)CrossRef
2.
go back to reference Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., Eleftheriou, E.: Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15(7), 529–544 (2020)CrossRef Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., Eleftheriou, E.: Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15(7), 529–544 (2020)CrossRef
3.
go back to reference Caselli, M., Subhechha, S., Debacker, P., Mallik, A., Verkest, D.: Write-verify scheme for igzo dram in analog in-memory computing. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1462–1466. IEEE (2022) Caselli, M., Subhechha, S., Debacker, P., Mallik, A., Verkest, D.: Write-verify scheme for igzo dram in analog in-memory computing. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1462–1466. IEEE (2022)
4.
go back to reference Eslami, N., Moaiyeri, M.H.: A flexible and reliable rram-based in-memory computing architecture for data-intensive applications. IEEE Trans. Emerg. Top. Comput. 11, 1–12 (2023) Eslami, N., Moaiyeri, M.H.: A flexible and reliable rram-based in-memory computing architecture for data-intensive applications. IEEE Trans. Emerg. Top. Comput. 11, 1–12 (2023)
5.
go back to reference Wang, Q., Niu, G., Ren, W., Wang, R., Chen, X., Li, X., Ye, Z.-G., Xie, Y.-H., Song, S., Song, Z.: Phase change random access memory for neuro-inspired computing. Adv. Electron. Mater. 7(6), 2001241 (2021)CrossRef Wang, Q., Niu, G., Ren, W., Wang, R., Chen, X., Li, X., Ye, Z.-G., Xie, Y.-H., Song, S., Song, Z.: Phase change random access memory for neuro-inspired computing. Adv. Electron. Mater. 7(6), 2001241 (2021)CrossRef
6.
go back to reference Shi, Y., Oh, S., Huang, Z., Lu, X., Kang, S.H., Kuzum, D.: Performance prospects of deeply scaled spin-transfer torque magnetic random-access memory for in-memory computing. IEEE Electron Device Lett. 41(7), 1126–1129 (2020)CrossRef Shi, Y., Oh, S., Huang, Z., Lu, X., Kang, S.H., Kuzum, D.: Performance prospects of deeply scaled spin-transfer torque magnetic random-access memory for in-memory computing. IEEE Electron Device Lett. 41(7), 1126–1129 (2020)CrossRef
7.
go back to reference De Rose, R., Zanotti, T., Puglisi, F.M., Crupi, F., Pavan, P., Lanuzza, M.: STT-MTJ based smart implication for energy-efficient logic-in-memory computing. Solid-State Electron. 184, 108065 (2021)CrossRef De Rose, R., Zanotti, T., Puglisi, F.M., Crupi, F., Pavan, P., Lanuzza, M.: STT-MTJ based smart implication for energy-efficient logic-in-memory computing. Solid-State Electron. 184, 108065 (2021)CrossRef
8.
go back to reference Wu, B., Zhu, H., Reis, D., Wang, Z., Wang, Y., Chen, K., Liu, W., Lombardi, F., Hu, X.S.: An energy-efficient computing-in-memory (cim) scheme using field-free spin-orbit torque (sot) magnetic rams. IEEE Trans. Emerg. Top. Comput. 11, 1–12 (2023) Wu, B., Zhu, H., Reis, D., Wang, Z., Wang, Y., Chen, K., Liu, W., Lombardi, F., Hu, X.S.: An energy-efficient computing-in-memory (cim) scheme using field-free spin-orbit torque (sot) magnetic rams. IEEE Trans. Emerg. Top. Comput. 11, 1–12 (2023)
9.
go back to reference Lin, H., Xu, N., Wang, D., Liu, L., Zhao, X., Zhou, Y., Luo, X., Song, C., Yu, G., Xing, G.: Implementation of highly reliable and energy-efficient nonvolatile in-memory computing using multistate domain wall spin-orbit torque device. Adv. Intell. Syst. 4(9), 2200028 (2022)CrossRef Lin, H., Xu, N., Wang, D., Liu, L., Zhao, X., Zhou, Y., Luo, X., Song, C., Yu, G., Xing, G.: Implementation of highly reliable and energy-efficient nonvolatile in-memory computing using multistate domain wall spin-orbit torque device. Adv. Intell. Syst. 4(9), 2200028 (2022)CrossRef
10.
go back to reference Jangra, P., Duhan, M.: Performance analysis of voltage-controlled magnetic anisotropy MRAM-based logic gates and full adder. ECS J. Solid State Sci. Technol. 12(5), 051001 (2023)CrossRef Jangra, P., Duhan, M.: Performance analysis of voltage-controlled magnetic anisotropy MRAM-based logic gates and full adder. ECS J. Solid State Sci. Technol. 12(5), 051001 (2023)CrossRef
11.
go back to reference Wang, H., Kang, W., Pan, B., Zhang, H., Deng, E., Zhao, W.: Spintronic computing-in-memory architecture based on voltage-controlled spin-orbit torque devices for binary neural networks. IEEE Trans. Electron Devices 68(10), 4944–4950 (2021)CrossRef Wang, H., Kang, W., Pan, B., Zhang, H., Deng, E., Zhao, W.: Spintronic computing-in-memory architecture based on voltage-controlled spin-orbit torque devices for binary neural networks. IEEE Trans. Electron Devices 68(10), 4944–4950 (2021)CrossRef
12.
go back to reference Kuan, K., Adegbija, T.: Halls: an energy-efficient highly adaptable last level STT-RAM cache for multicore systems. IEEE Trans. Comput. 68(11), 1623–1634 (2019)MathSciNetCrossRef Kuan, K., Adegbija, T.: Halls: an energy-efficient highly adaptable last level STT-RAM cache for multicore systems. IEEE Trans. Comput. 68(11), 1623–1634 (2019)MathSciNetCrossRef
13.
go back to reference Bhattacharya, J., Chakrabarti, A.: Electronic and transport properties of Heusler alloy based magnetic tunneling junctions: a first principles study. Comput. Mater. Sci. 216, 111852 (2023)CrossRef Bhattacharya, J., Chakrabarti, A.: Electronic and transport properties of Heusler alloy based magnetic tunneling junctions: a first principles study. Comput. Mater. Sci. 216, 111852 (2023)CrossRef
14.
go back to reference Cho, K., Liu, X., Chen, Z., Gupta, S.K.: Utilizing valley-spin hall effect in monolayer WSE 2 for designing low power nonvolatile spintronic devices and flip-flops. IEEE Trans. Electron Devices 69(4), 1667–1676 (2021)CrossRef Cho, K., Liu, X., Chen, Z., Gupta, S.K.: Utilizing valley-spin hall effect in monolayer WSE 2 for designing low power nonvolatile spintronic devices and flip-flops. IEEE Trans. Electron Devices 69(4), 1667–1676 (2021)CrossRef
15.
go back to reference Zabihi, M., Chowdhury, Z.I., Zhao, Z., Karpuzcu, U.R., Wang, J.-P., Sapatnekar, S.S.: In-memory processing on the spintronic cram: from hardware design to application mapping. IEEE Trans. Comput. 68(8), 1159–1173 (2018)MathSciNetCrossRef Zabihi, M., Chowdhury, Z.I., Zhao, Z., Karpuzcu, U.R., Wang, J.-P., Sapatnekar, S.S.: In-memory processing on the spintronic cram: from hardware design to application mapping. IEEE Trans. Comput. 68(8), 1159–1173 (2018)MathSciNetCrossRef
16.
go back to reference Dhull, S., Nisar, A., Bhat, R., Kaushik, B.K.: Area efficient computing-in-memory architecture using stt/sot hybrid three level cell. IEEE Open J. Nanotechnol. 3, 45–51 (2022)CrossRef Dhull, S., Nisar, A., Bhat, R., Kaushik, B.K.: Area efficient computing-in-memory architecture using stt/sot hybrid three level cell. IEEE Open J. Nanotechnol. 3, 45–51 (2022)CrossRef
17.
go back to reference Lin, H., Luo, X., Liu, L., Wang, D., Zhao, X., Wang, Z., Xue, X., Zhang, F., Xing, G.: All-electrical control of compact sot-mram: toward highly efficient and reliable non-volatile in-memory computing. Micromachines 13, 319 (2022)CrossRef Lin, H., Luo, X., Liu, L., Wang, D., Zhao, X., Wang, Z., Xue, X., Zhang, F., Xing, G.: All-electrical control of compact sot-mram: toward highly efficient and reliable non-volatile in-memory computing. Micromachines 13, 319 (2022)CrossRef
18.
go back to reference Yang, S., Zhang, T., Jiang, C.: van der waals magnets: Material family, detection and modulation of magnetism, and perspective in spintronics. Adv. Sci. 8(2), 2002488 (2021)CrossRef Yang, S., Zhang, T., Jiang, C.: van der waals magnets: Material family, detection and modulation of magnetism, and perspective in spintronics. Adv. Sci. 8(2), 2002488 (2021)CrossRef
19.
go back to reference Liu, Y., Shao, Q.: Two-dimensional materials for energy-efficient spin-orbit torque devices. ACS Nano 14(8), 9389–9407 (2020)CrossRef Liu, Y., Shao, Q.: Two-dimensional materials for energy-efficient spin-orbit torque devices. ACS Nano 14(8), 9389–9407 (2020)CrossRef
20.
go back to reference Li, X., Dong, B., Sun, X., Wang, H., Yang, T., Yu, G., Han, Z.V.: Perspectives on exfoliated two-dimensional spintronics. J. Semicond. 40(8), 081508 (2019)CrossRef Li, X., Dong, B., Sun, X., Wang, H., Yang, T., Yu, G., Han, Z.V.: Perspectives on exfoliated two-dimensional spintronics. J. Semicond. 40(8), 081508 (2019)CrossRef
21.
go back to reference Lin, X., Yang, W., Wang, K.L., Zhao, W.: Two-dimensional spintronics for low-power electronics. Nat. Electron. 2(7), 274–283 (2019)CrossRef Lin, X., Yang, W., Wang, K.L., Zhao, W.: Two-dimensional spintronics for low-power electronics. Nat. Electron. 2(7), 274–283 (2019)CrossRef
22.
go back to reference MacNeill, D., Stiehl, G., Guimaraes, M., Buhrman, R., Park, J., Ralph, D.: Control of spin-orbit torques through crystal symmetry in wte2/ferromagnet bilayers. Nat. Phys. 13(3), 300–305 (2017)CrossRef MacNeill, D., Stiehl, G., Guimaraes, M., Buhrman, R., Park, J., Ralph, D.: Control of spin-orbit torques through crystal symmetry in wte2/ferromagnet bilayers. Nat. Phys. 13(3), 300–305 (2017)CrossRef
23.
go back to reference Yan, B., Felser, C.: Topological materials: weyl semimetals. Ann. Rev. Condens. Matter Phys. 8, 337–354 (2017)CrossRef Yan, B., Felser, C.: Topological materials: weyl semimetals. Ann. Rev. Condens. Matter Phys. 8, 337–354 (2017)CrossRef
24.
go back to reference Han, W., Otani, Y., Maekawa, S.: Quantum materials for spin and charge conversion. npj Quantum Mater. 3(1), 27 (2018)CrossRef Han, W., Otani, Y., Maekawa, S.: Quantum materials for spin and charge conversion. npj Quantum Mater. 3(1), 27 (2018)CrossRef
25.
go back to reference Zhang, Q., Zhao, Y., He, C., Huo, Y., Cui, B., Zhu, Z., Zhang, G., Yu, G., He, B., Zhang, Y., et al.: Perpendicular magnetization switching driven by spin-orbit torque for artificial synapses in epitaxial pt-based multilayers. Adv. Electron. Mater. 8(12), 2200845 (2022)CrossRef Zhang, Q., Zhao, Y., He, C., Huo, Y., Cui, B., Zhu, Z., Zhang, G., Yu, G., He, B., Zhang, Y., et al.: Perpendicular magnetization switching driven by spin-orbit torque for artificial synapses in epitaxial pt-based multilayers. Adv. Electron. Mater. 8(12), 2200845 (2022)CrossRef
26.
go back to reference Zhou, H., Zhang, Y., Zhao, W.: Tunable tunneling magnetoresistance in van der waals magnetic tunnel junctions with 1 t-crte 2 electrodes. ACS Appl. Mater. Interfaces 13(1), 1214–1221 (2020)CrossRef Zhou, H., Zhang, Y., Zhao, W.: Tunable tunneling magnetoresistance in van der waals magnetic tunnel junctions with 1 t-crte 2 electrodes. ACS Appl. Mater. Interfaces 13(1), 1214–1221 (2020)CrossRef
27.
go back to reference Dayen, J.-F., Ray, S.J., Karis, O., Vera-Marun, I.J., Kamalakar, M.V.: Two-dimensional van der waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev. 7(1), 011303 (2020)CrossRef Dayen, J.-F., Ray, S.J., Karis, O., Vera-Marun, I.J., Kamalakar, M.V.: Two-dimensional van der waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev. 7(1), 011303 (2020)CrossRef
28.
go back to reference Cho, K., Fong, X., Gupta, S.K.: Exchange-coupling-enabled electrical-isolation of compute and programming paths in valley-spin hall effect based spintronic device for neuromorphic applications. In: Device Research Conference (DRC), pp. 1–2. IEEE (2021) Cho, K., Fong, X., Gupta, S.K.: Exchange-coupling-enabled electrical-isolation of compute and programming paths in valley-spin hall effect based spintronic device for neuromorphic applications. In: Device Research Conference (DRC), pp. 1–2. IEEE (2021)
29.
go back to reference Hsu, W.-H., Bell, R., Victora, R.: Ultra-low write energy composite free layer spin-orbit torque MRAM. IEEE Trans. Magn. 54(11), 1–5 (2018)CrossRef Hsu, W.-H., Bell, R., Victora, R.: Ultra-low write energy composite free layer spin-orbit torque MRAM. IEEE Trans. Magn. 54(11), 1–5 (2018)CrossRef
30.
go back to reference Wang, Y., Naviner, Y.L., Zhao, W.: Compact model of magnetic tunnel junction with stochastic spin transfer torque switching for reliability analyses. Microelectron. Reliab. 54(9), 1774–1778 (2014)CrossRef Wang, Y., Naviner, Y.L., Zhao, W.: Compact model of magnetic tunnel junction with stochastic spin transfer torque switching for reliability analyses. Microelectron. Reliab. 54(9), 1774–1778 (2014)CrossRef
31.
go back to reference Wang, Y., Zhang, Y., Deng, E., Klein, J.-O., Naviner, L.A., Zhao, W.: Compact model of magnetic tunnel junction with stochastic spin transfer torque switching for reliability analyses. Microelectron. Reliab. 54(9–10), 1774–1778 (2014)CrossRef Wang, Y., Zhang, Y., Deng, E., Klein, J.-O., Naviner, L.A., Zhao, W.: Compact model of magnetic tunnel junction with stochastic spin transfer torque switching for reliability analyses. Microelectron. Reliab. 54(9–10), 1774–1778 (2014)CrossRef
32.
go back to reference Zhang, Y., Zhao, W., Lakys, Y., Klein, J.-O., Kim, J.-V., Ravelosona, D., Chappert, C.: Compact modeling of perpendicular-anisotropy cofeb/mgo magnetic tunnel junctions. IEEE Trans. Electron Devices 59(3), 819–826 (2012)CrossRef Zhang, Y., Zhao, W., Lakys, Y., Klein, J.-O., Kim, J.-V., Ravelosona, D., Chappert, C.: Compact modeling of perpendicular-anisotropy cofeb/mgo magnetic tunnel junctions. IEEE Trans. Electron Devices 59(3), 819–826 (2012)CrossRef
33.
go back to reference Suzuki, Y., Tulapurkar, A.A., Chappert, C.: Spin-injection phenomena and applications. In: Nanomagnetism and Spintronics, pp. 93–153. Elsevier, Amsterdam (2009)CrossRef Suzuki, Y., Tulapurkar, A.A., Chappert, C.: Spin-injection phenomena and applications. In: Nanomagnetism and Spintronics, pp. 93–153. Elsevier, Amsterdam (2009)CrossRef
34.
go back to reference Alisha, P., Warrier, T.S.: Optimizing free layer of magnetic tunnel junction for true random number generator. Mem.-Mater. Devices Circuits Syst. 5, 100075 (2023)CrossRef Alisha, P., Warrier, T.S.: Optimizing free layer of magnetic tunnel junction for true random number generator. Mem.-Mater. Devices Circuits Syst. 5, 100075 (2023)CrossRef
35.
go back to reference Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B.: Read disturb fault detection in stt-mram. In: International Test Conference, pp. 1–7. IEEE (2014) Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B.: Read disturb fault detection in stt-mram. In: International Test Conference, pp. 1–7. IEEE (2014)
36.
go back to reference Heindl, R., Rippard, W., Russek, S., Kos, A.: Physical limitations to efficient high-speed spin-torque switching in magnetic tunnel junctions. Phys. Rev. B 83(5), 054430 (2011)CrossRef Heindl, R., Rippard, W., Russek, S., Kos, A.: Physical limitations to efficient high-speed spin-torque switching in magnetic tunnel junctions. Phys. Rev. B 83(5), 054430 (2011)CrossRef
37.
go back to reference Mahdavi, N.: Data block manipulation for error rate reduction in stt-mram based main memory. J. Supercomput. 78(11), 13 342-13 372 (2022)CrossRef Mahdavi, N.: Data block manipulation for error rate reduction in stt-mram based main memory. J. Supercomput. 78(11), 13 342-13 372 (2022)CrossRef
38.
go back to reference Mahdavi, N., Razaghian, F., Farbeh, H.: An architectural-level reliability improvement scheme in stt-mram main memory. Microprocess. Microsyst. 90, 104462 (2022)CrossRef Mahdavi, N., Razaghian, F., Farbeh, H.: An architectural-level reliability improvement scheme in stt-mram main memory. Microprocess. Microsyst. 90, 104462 (2022)CrossRef
39.
go back to reference Shreya, S., Jain, A., Kaushik, B.K.: Computing-in-memory using voltage-controlled spin-orbit torque based mram array. Microelectron. J. 109, 104943 (2021)CrossRef Shreya, S., Jain, A., Kaushik, B.K.: Computing-in-memory using voltage-controlled spin-orbit torque based mram array. Microelectron. J. 109, 104943 (2021)CrossRef
40.
go back to reference Kazemi, M., Rowlands, G.E., Ipek, E., Buhrman, R.A., Friedman, E.G.: Compact model for spin-orbit magnetic tunnel junctions. IEEE Trans. Electron Devices 63(2), 848–855 (2016)CrossRef Kazemi, M., Rowlands, G.E., Ipek, E., Buhrman, R.A., Friedman, E.G.: Compact model for spin-orbit magnetic tunnel junctions. IEEE Trans. Electron Devices 63(2), 848–855 (2016)CrossRef
41.
go back to reference Wang, G., Zhang, Y., Wang, J., Zhang, Z., Zhang, K., Zheng, Z., Klein, J.-O., Ravelosona, D., Zhang, Y., Zhao, W.: Compact modeling of perpendicular-magnetic-anisotropy double-barrier magnetic tunnel junction with enhanced thermal stability recording structure. IEEE Trans. Electron Devices 66(5), 2431–2436 (2019)CrossRef Wang, G., Zhang, Y., Wang, J., Zhang, Z., Zhang, K., Zheng, Z., Klein, J.-O., Ravelosona, D., Zhang, Y., Zhao, W.: Compact modeling of perpendicular-magnetic-anisotropy double-barrier magnetic tunnel junction with enhanced thermal stability recording structure. IEEE Trans. Electron Devices 66(5), 2431–2436 (2019)CrossRef
42.
go back to reference Deng, E., Zhang, Y., Klein, J.-O., Ravelsona, D., Chappert, C., Zhao, W.: Low power magnetic full-adder based on spin transfer torque mram. IEEE Trans. Magn. 49(9), 4982–4987 (2013)CrossRef Deng, E., Zhang, Y., Klein, J.-O., Ravelsona, D., Chappert, C., Zhao, W.: Low power magnetic full-adder based on spin transfer torque mram. IEEE Trans. Magn. 49(9), 4982–4987 (2013)CrossRef
43.
go back to reference Zabihi, M., Zhao, Z., Mahendra, D., Chowdhury, Z.I., Resch, S., Peterson, T., Karpuzcu, U.R., Wang, J.-P., Sapatnekar, S.S.: Using spin-hall mtjs to build an energy-efficient in-memory computation platform. In: 20th International Symposium on Quality Electronic Design (ISQED), pp. 52–57 (2019) Zabihi, M., Zhao, Z., Mahendra, D., Chowdhury, Z.I., Resch, S., Peterson, T., Karpuzcu, U.R., Wang, J.-P., Sapatnekar, S.S.: Using spin-hall mtjs to build an energy-efficient in-memory computation platform. In: 20th International Symposium on Quality Electronic Design (ISQED), pp. 52–57 (2019)
44.
go back to reference Shreya, S., Jain, A., Kaushik, B.K.: Computing-in-memory using voltage-controlled spin-orbit torque based MRAM array. Microelectron. J. 109, 104943 (2021)CrossRef Shreya, S., Jain, A., Kaushik, B.K.: Computing-in-memory using voltage-controlled spin-orbit torque based MRAM array. Microelectron. J. 109, 104943 (2021)CrossRef
Metadata
Title
TiCoSb Heusler alloy-based magnetic tunnel junction for efficient computing in memory architecture
Authors
P. B. Alisha
Tripti S. Warrier
Publication date
30-08-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02220-2