Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

Tissue Engineering for Cardiac Regeneration

Authors : Roberto Gaetani, Pieter A. F. Doevendans, Elisa Messina, Joost P. G. Sluijter

Published in: Myocardial Tissue Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tissue engineering is an interdisciplinary field that involves engineering, chemistry, biology and medicine and is emerging in the last decade as a possible approach to regenerate an injured organ by using cells, matrix, biological active molecules and physiologic stimuli. In the cardiovascular field, cardiac tissue engineering (CTE) is suggested as an alternative approach for direct cell transplantation and aims to regenerate an injured myocardial ventricular wall or to repair congenital defects. This chapter will focus on the strategies developed for CTE and in particular on materials and cells used and the advantages that CTE could offers compared to conventional cell therapy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Udelson, J.E., Patten, R.D., Konstam, M.A.: New concepts in post-infarction ventricular remodeling. Rev. Cardiovasc. Med. 4(Suppl 3), S3–S12 (2003) Udelson, J.E., Patten, R.D., Konstam, M.A.: New concepts in post-infarction ventricular remodeling. Rev. Cardiovasc. Med. 4(Suppl 3), S3–S12 (2003)
2.
go back to reference Anversa, P., Li, P., Zhang, X., et al.: Ischaemic myocardial injury and ventricular remodelling. Cardiovasc. Res. 27(2), 145–157 (1993)CrossRef Anversa, P., Li, P., Zhang, X., et al.: Ischaemic myocardial injury and ventricular remodelling. Cardiovasc. Res. 27(2), 145–157 (1993)CrossRef
3.
go back to reference Gaetani, R., Barile, L., Forte, E., et al.: New perspectives to repair a broken heart. Cardiovasc. Hematol. Agents. Med. Chem. 7(2), 91–107 (2009)CrossRef Gaetani, R., Barile, L., Forte, E., et al.: New perspectives to repair a broken heart. Cardiovasc. Hematol. Agents. Med. Chem. 7(2), 91–107 (2009)CrossRef
4.
go back to reference Menasche, P., Hagege, A.A., Vilquin, J.T., et al.: Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41(7), 1078–1083 (2003)CrossRef Menasche, P., Hagege, A.A., Vilquin, J.T., et al.: Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41(7), 1078–1083 (2003)CrossRef
5.
go back to reference Assmus, B., Schachinger, V., Teupe, C., et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24), 3009–3017 (2002)CrossRef Assmus, B., Schachinger, V., Teupe, C., et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24), 3009–3017 (2002)CrossRef
6.
go back to reference Schachinger, V., Assmus, B., Britten, M.B., et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J. Am. Coll. Cardiol. 44(8), 1690–1699 (2004)CrossRef Schachinger, V., Assmus, B., Britten, M.B., et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J. Am. Coll. Cardiol. 44(8), 1690–1699 (2004)CrossRef
7.
go back to reference Wollert, K.C., Meyer, G.P., Lotz, J., et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429), 141–148 (2004)CrossRef Wollert, K.C., Meyer, G.P., Lotz, J., et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429), 141–148 (2004)CrossRef
8.
go back to reference Meyer, G.P., Wollert, K.C., Lotz, J., et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10), 1287–1294 (2006)CrossRef Meyer, G.P., Wollert, K.C., Lotz, J., et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10), 1287–1294 (2006)CrossRef
9.
go back to reference Robey, T.E., Saiget, M.K., Reinecke, H., et al.: Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell Cardiol. 45(4), 567–581 (2008)CrossRef Robey, T.E., Saiget, M.K., Reinecke, H., et al.: Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell Cardiol. 45(4), 567–581 (2008)CrossRef
10.
go back to reference Zimmermann, W.H., Cesnjevar, R.: Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr. Cardiol. 30(5), 716–723 (2009)CrossRef Zimmermann, W.H., Cesnjevar, R.: Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr. Cardiol. 30(5), 716–723 (2009)CrossRef
11.
go back to reference Akhyari, P., Kamiya, H., Haverich, A., et al.: Myocardial tissue engineering: the extracellular matrix. Eur. J. Cardiothorac. Surg. 34(2), 229–241 (2008)CrossRef Akhyari, P., Kamiya, H., Haverich, A., et al.: Myocardial tissue engineering: the extracellular matrix. Eur. J. Cardiothorac. Surg. 34(2), 229–241 (2008)CrossRef
12.
go back to reference Radisic, M., Yang, L., Boublik, J., et al.: Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286(2), H507–H516 (2004)CrossRef Radisic, M., Yang, L., Boublik, J., et al.: Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286(2), H507–H516 (2004)CrossRef
13.
go back to reference Brown, M.A., Iyer, R.K., Radisic, M.: Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol. Prog. 24(4), 907–920 (2008)CrossRef Brown, M.A., Iyer, R.K., Radisic, M.: Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol. Prog. 24(4), 907–920 (2008)CrossRef
14.
go back to reference Fink, C., Ergun, S., Kralisch, D., et al.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. Faseb J. 14(5), 669–679 (2000) Fink, C., Ergun, S., Kralisch, D., et al.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. Faseb J. 14(5), 669–679 (2000)
15.
go back to reference Zhang, M., Methot, D., Poppa, V., et al.: Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol. 33(5), 907–921 (2001)CrossRef Zhang, M., Methot, D., Poppa, V., et al.: Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol. 33(5), 907–921 (2001)CrossRef
16.
go back to reference Hudson, W., Collins, M.C., deFreitas, D., et al.: Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J. Surg. Res. 142(2), 263–267 (2007)CrossRef Hudson, W., Collins, M.C., deFreitas, D., et al.: Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J. Surg. Res. 142(2), 263–267 (2007)CrossRef
17.
go back to reference Freyman, T., Polin, G., Osman, H., et al.: A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27(9), 1114–1122 (2006) Freyman, T., Polin, G., Osman, H., et al.: A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27(9), 1114–1122 (2006)
18.
go back to reference Hayashi, M., Li, T.S., Ito, H., et al.: Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: an experimental study. Cell Transpl. 13(6), 639–647 (2004)CrossRef Hayashi, M., Li, T.S., Ito, H., et al.: Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: an experimental study. Cell Transpl. 13(6), 639–647 (2004)CrossRef
19.
go back to reference Reinecke, H., Zhang, M., Bartosek, T., et al.: Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100(2), 193–202 (1999) Reinecke, H., Zhang, M., Bartosek, T., et al.: Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100(2), 193–202 (1999)
20.
go back to reference Zvibel, I., Smets, F., Soriano, H.: Anoikis: roadblock to cell transplantation? Cell Transpl. 11(7), 621–630 (2002) Zvibel, I., Smets, F., Soriano, H.: Anoikis: roadblock to cell transplantation? Cell Transpl. 11(7), 621–630 (2002)
21.
go back to reference Nakamura, Y., Yasuda, T., Weisel, R.D., et al.: Enhanced cell transplantation: preventing apoptosis increases cell survival and ventricular function. Am. J. Physiol. Heart Circ. Physiol. 291(2), H939–H947 (2006)CrossRef Nakamura, Y., Yasuda, T., Weisel, R.D., et al.: Enhanced cell transplantation: preventing apoptosis increases cell survival and ventricular function. Am. J. Physiol. Heart Circ. Physiol. 291(2), H939–H947 (2006)CrossRef
22.
go back to reference Li, W., Ma, N., Ong, L.L., et al.: Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8), 2118–2127 (2007)CrossRef Li, W., Ma, N., Ong, L.L., et al.: Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8), 2118–2127 (2007)CrossRef
23.
go back to reference Azarnoush, K., Maurel, A., Sebbah, L., et al.: Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. J. Thorac. Cardiovasc. Surg. 130(1), 173–179 (2005)CrossRef Azarnoush, K., Maurel, A., Sebbah, L., et al.: Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. J. Thorac. Cardiovasc. Surg. 130(1), 173–179 (2005)CrossRef
24.
go back to reference Maurel, A., Azarnoush, K., Sabbah, L., et al.: Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 80(5), 660–665 (2005)CrossRef Maurel, A., Azarnoush, K., Sabbah, L., et al.: Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 80(5), 660–665 (2005)CrossRef
25.
go back to reference Jayakumar, J., Suzuki, K., Sammut, I.A., et al.: Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation 104(12 Suppl 1), I303–I307 (2001) Jayakumar, J., Suzuki, K., Sammut, I.A., et al.: Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation 104(12 Suppl 1), I303–I307 (2001)
26.
go back to reference Liu, T.B., Fedak, P.W., Weisel, R.D., et al.: Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. Am. J. Physiol. Heart Circ. Physiol. 287(6), H2840–H2849 (2004)CrossRef Liu, T.B., Fedak, P.W., Weisel, R.D., et al.: Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. Am. J. Physiol. Heart Circ. Physiol. 287(6), H2840–H2849 (2004)CrossRef
27.
go back to reference Laflamme, M.A., Chen, K.Y., Naumova, A.V., et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25(9), 1015–1024 (2007)CrossRef Laflamme, M.A., Chen, K.Y., Naumova, A.V., et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25(9), 1015–1024 (2007)CrossRef
28.
go back to reference Davis, M.E., Hsieh, P.C., Takahashi, T., et al.: Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. USA 103(21), 8155–8160 (2006)CrossRef Davis, M.E., Hsieh, P.C., Takahashi, T., et al.: Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. USA 103(21), 8155–8160 (2006)CrossRef
29.
go back to reference Retuerto, M.A., Schalch, P., Patejunas, G., et al.: Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. J. Thorac. Cardiovasc. Surg. 127(4), 1041–1049 (2004). discussion 1049–1051CrossRef Retuerto, M.A., Schalch, P., Patejunas, G., et al.: Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. J. Thorac. Cardiovasc. Surg. 127(4), 1041–1049 (2004). discussion 1049–1051CrossRef
30.
go back to reference Wang, Y., Haider, H.K., Ahmad, N., et al.: Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J. Mol. Cell Cardiol. 40(5), 736–745 (2006)CrossRef Wang, Y., Haider, H.K., Ahmad, N., et al.: Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J. Mol. Cell Cardiol. 40(5), 736–745 (2006)CrossRef
31.
go back to reference Matsumoto, R., Omura, T., Yoshiyama, M., et al.: Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25(6), 1168–1173 (2005)CrossRef Matsumoto, R., Omura, T., Yoshiyama, M., et al.: Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25(6), 1168–1173 (2005)CrossRef
32.
go back to reference Suzuki, K., Murtuza, B., Beauchamp, J.R., et al.: Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. Faseb J. 18(10), 1153–1155 (2004) Suzuki, K., Murtuza, B., Beauchamp, J.R., et al.: Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. Faseb J. 18(10), 1153–1155 (2004)
33.
go back to reference Hsieh, P.C., Davis, M.E., Gannon, J., et al.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116(1), 237–248 (2006) Hsieh, P.C., Davis, M.E., Gannon, J., et al.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116(1), 237–248 (2006)
34.
go back to reference Padin-Iruegas, M.E., Misao, Y., Davis, M.E., et al.: Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120(10), 876–887 (2009)CrossRef Padin-Iruegas, M.E., Misao, Y., Davis, M.E., et al.: Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120(10), 876–887 (2009)CrossRef
35.
go back to reference Muller-Ehmsen, J., Krausgrill, B., Burst, V., et al.: Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J. Mol. Cell Cardiol. 41(5), 876–884 (2006)CrossRef Muller-Ehmsen, J., Krausgrill, B., Burst, V., et al.: Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J. Mol. Cell Cardiol. 41(5), 876–884 (2006)CrossRef
36.
go back to reference Hou, D., Youssef, E.A., Brinton, T.J., et al.: Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(Suppl 9), I150–I156 (2005) Hou, D., Youssef, E.A., Brinton, T.J., et al.: Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(Suppl 9), I150–I156 (2005)
37.
go back to reference Terrovitis, J., Lautamaki, R., Bonios, M., et al.: Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54(17), 1619–1626 (2009)CrossRef Terrovitis, J., Lautamaki, R., Bonios, M., et al.: Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54(17), 1619–1626 (2009)CrossRef
38.
go back to reference Kutschka, I., Chen, I.Y., Kofidis, T., et al.: Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114(Suppl 1), I167–I173 (2006) Kutschka, I., Chen, I.Y., Kofidis, T., et al.: Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114(Suppl 1), I167–I173 (2006)
39.
go back to reference Kutschka, I., Chen, I.Y., Kofidis, T., et al.: In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J. Heart Lung Transpl. 26(3), 273–280 (2007)CrossRef Kutschka, I., Chen, I.Y., Kofidis, T., et al.: In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J. Heart Lung Transpl. 26(3), 273–280 (2007)CrossRef
40.
go back to reference Martens, T.P., Godier, A.F., Parks, J.J., et al.: Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transpl. 18(3), 297–304 (2009)CrossRef Martens, T.P., Godier, A.F., Parks, J.J., et al.: Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transpl. 18(3), 297–304 (2009)CrossRef
41.
go back to reference Corda, S., Samuel, J.L., Rappaport, L.: Extracellular matrix and growth factors during heart growth. Heart Fail. Rev. 5(2), 119–130 (2000)CrossRef Corda, S., Samuel, J.L., Rappaport, L.: Extracellular matrix and growth factors during heart growth. Heart Fail. Rev. 5(2), 119–130 (2000)CrossRef
42.
go back to reference Akins, R.E., Rockwood, D., Robinson, K.G., et al.: Three-dimensional culture alters primary cardiac cell phenotype. Tissue Eng. Part A 16(2), 629–641 (2010) Akins, R.E., Rockwood, D., Robinson, K.G., et al.: Three-dimensional culture alters primary cardiac cell phenotype. Tissue Eng. Part A 16(2), 629–641 (2010)
43.
go back to reference Battista, S., Guarnieri, D., Borselli, C., et al.: The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26(31), 6194–6207 (2005)CrossRef Battista, S., Guarnieri, D., Borselli, C., et al.: The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26(31), 6194–6207 (2005)CrossRef
44.
go back to reference Fomovsky, G.M., Thomopoulos, S., Holmes, J.W.: Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell Cardiol. 62, 1331–1338 (2009) Fomovsky, G.M., Thomopoulos, S., Holmes, J.W.: Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell Cardiol. 62, 1331–1338 (2009)
45.
go back to reference Bowers, S.L., Banerjee, I., Baudino, T.A.: The extracellular matrix: At the center of it all. J. Mol. Cell Cardiol. 48(3), 474–482 (2010) Bowers, S.L., Banerjee, I., Baudino, T.A.: The extracellular matrix: At the center of it all. J. Mol. Cell Cardiol. 48(3), 474–482 (2010)
46.
go back to reference Mosesson, M.W.: Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3(8), 1894–1904 (2005)CrossRef Mosesson, M.W.: Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3(8), 1894–1904 (2005)CrossRef
47.
go back to reference Ahmed, T.A., Dare, E.V., Hincke, M.: Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B. Rev. 14, 199–215 (2008) CrossRef Ahmed, T.A., Dare, E.V., Hincke, M.: Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B. Rev. 14, 199–215 (2008) CrossRef
48.
go back to reference Christman, K.L., Fok, H.H., Sievers, R.E., et al.: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10(3–4), 403–409 (2004)CrossRef Christman, K.L., Fok, H.H., Sievers, R.E., et al.: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10(3–4), 403–409 (2004)CrossRef
49.
go back to reference Christman, K.L., Vardanian, A.J., Fang, Q., et al.: Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44(3), 654–660 (2004)CrossRef Christman, K.L., Vardanian, A.J., Fang, Q., et al.: Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44(3), 654–660 (2004)CrossRef
50.
go back to reference Yu, J., Christman, K.L., Chin, E., et al.: Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 137(1), 180–187 (2009)CrossRef Yu, J., Christman, K.L., Chin, E., et al.: Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 137(1), 180–187 (2009)CrossRef
51.
go back to reference Ryu, J.H., Kim, I.K., Cho, S.W., et al.: Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26(3), 319–326 (2005)CrossRef Ryu, J.H., Kim, I.K., Cho, S.W., et al.: Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26(3), 319–326 (2005)CrossRef
52.
go back to reference Huang, N.F., Lam, A., Fang, Q., et al.: Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen Med. 4(4), 527–538 (2009)CrossRef Huang, N.F., Lam, A., Fang, Q., et al.: Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen Med. 4(4), 527–538 (2009)CrossRef
53.
go back to reference Birla, R.K., Borschel, G.H., Dennis, R.G., et al.: Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 11(5–6), 803–813 (2005)CrossRef Birla, R.K., Borschel, G.H., Dennis, R.G., et al.: Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 11(5–6), 803–813 (2005)CrossRef
54.
go back to reference Birla, R.K., Dhawan, V., Dow, D.E., et al.: Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology. Biotechnol. Lett. 31(2), 191–201 (2009)CrossRef Birla, R.K., Dhawan, V., Dow, D.E., et al.: Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology. Biotechnol. Lett. 31(2), 191–201 (2009)CrossRef
55.
go back to reference Silverstein, M.E., Keown, K., Owen, J.A., et al.: Collagen fibers as a fleece hemostatic agent. J. Trauma. 20(8), 688–694 (1980)CrossRef Silverstein, M.E., Keown, K., Owen, J.A., et al.: Collagen fibers as a fleece hemostatic agent. J. Trauma. 20(8), 688–694 (1980)CrossRef
56.
go back to reference Kofidis, T., Akhyari, P., Wachsmann, B., et al.: A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur. J. Cardiothorac. Surg. 22(2), 238–243 (2002)CrossRef Kofidis, T., Akhyari, P., Wachsmann, B., et al.: A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur. J. Cardiothorac. Surg. 22(2), 238–243 (2002)CrossRef
57.
go back to reference Kofidis, T., Akhyari, P., Wachsmann, B., et al.: Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research. Tissue Eng. 9(3), 517–523 (2003)CrossRef Kofidis, T., Akhyari, P., Wachsmann, B., et al.: Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research. Tissue Eng. 9(3), 517–523 (2003)CrossRef
58.
go back to reference Gaballa, M.A., Sunkomat, J.N., Thai, H., et al.: Grafting an acellular 3-dimensional collagen scaffold onto a non-transmural infarcted myocardium induces neo-angiogenesis and reduces cardiac remodeling. J. Heart Lung Transpl. 25(8), 946–954 (2006)CrossRef Gaballa, M.A., Sunkomat, J.N., Thai, H., et al.: Grafting an acellular 3-dimensional collagen scaffold onto a non-transmural infarcted myocardium induces neo-angiogenesis and reduces cardiac remodeling. J. Heart Lung Transpl. 25(8), 946–954 (2006)CrossRef
59.
go back to reference Cortes-Morichetti, M., Frati, G., Schussler, O., et al.: Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng. 13(11), 2681–2687 (2007)CrossRef Cortes-Morichetti, M., Frati, G., Schussler, O., et al.: Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng. 13(11), 2681–2687 (2007)CrossRef
60.
go back to reference Chachques, J.C., Trainini, J.C., Lago, N., et al.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transpl. 16(9), 927–934 (2007)CrossRef Chachques, J.C., Trainini, J.C., Lago, N., et al.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transpl. 16(9), 927–934 (2007)CrossRef
61.
go back to reference Chachques, J.C., Trainini, J.C., Lago, N., et al.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg. 85(3), 901–908 (2008)CrossRef Chachques, J.C., Trainini, J.C., Lago, N., et al.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg. 85(3), 901–908 (2008)CrossRef
62.
go back to reference Schussler, O., Coirault, C., Louis-Tisserand, M., et al.: Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nat. Clin. Pract. Cardiovasc. Med. 6(3), 240–249 (2009)CrossRef Schussler, O., Coirault, C., Louis-Tisserand, M., et al.: Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nat. Clin. Pract. Cardiovasc. Med. 6(3), 240–249 (2009)CrossRef
63.
go back to reference Huang, N.F., Yu, J., Sievers, R., et al.: Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 11(11–12), 1860–1866 (2005)CrossRef Huang, N.F., Yu, J., Sievers, R., et al.: Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 11(11–12), 1860–1866 (2005)CrossRef
64.
go back to reference Dai, W., Wold, L.E., Dow, J.S., et al.: Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46(4), 714–719 (2005)CrossRef Dai, W., Wold, L.E., Dow, J.S., et al.: Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46(4), 714–719 (2005)CrossRef
65.
go back to reference Stern, R., Asari, A.A., Sugahara, K.N.: Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 85(8), 699–715 (2006)CrossRef Stern, R., Asari, A.A., Sugahara, K.N.: Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 85(8), 699–715 (2006)CrossRef
66.
go back to reference Khademhosseini, A., Eng, G., Yeh, J., et al.: Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed. Microdevices 9(2), 149–157 (2007)CrossRef Khademhosseini, A., Eng, G., Yeh, J., et al.: Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed. Microdevices 9(2), 149–157 (2007)CrossRef
67.
go back to reference Ventura, C., Cantoni, S., Bianchi, F., et al.: Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J. Biol. Chem. 282(19), 14243–14252 (2007)CrossRef Ventura, C., Cantoni, S., Bianchi, F., et al.: Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J. Biol. Chem. 282(19), 14243–14252 (2007)CrossRef
68.
go back to reference Lionetti, V., Cantoni, S., Cavallini, C., et al.: Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J. Biol. Chem. 285(13), 9949–9961 (2010)CrossRef Lionetti, V., Cantoni, S., Cavallini, C., et al.: Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J. Biol. Chem. 285(13), 9949–9961 (2010)CrossRef
69.
go back to reference Leor, J., Aboulafia-Etzion, S., Dar, A., et al.: Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000) Leor, J., Aboulafia-Etzion, S., Dar, A., et al.: Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000)
70.
go back to reference Amir, G., Miller, L., Shachar, M., et al.: Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation. Cell Transpl. 18(3), 275–282 (2009)CrossRef Amir, G., Miller, L., Shachar, M., et al.: Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation. Cell Transpl. 18(3), 275–282 (2009)CrossRef
71.
go back to reference Dvir, T., Kedem, A., Ruvinov, E., et al.: Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. U S A. 106(35), 14990–14995 (2009)CrossRef Dvir, T., Kedem, A., Ruvinov, E., et al.: Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. U S A. 106(35), 14990–14995 (2009)CrossRef
72.
go back to reference Landa, N., Miller, L., Feinberg, M.S., et al.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)CrossRef Landa, N., Miller, L., Feinberg, M.S., et al.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)CrossRef
73.
go back to reference Hao, X., Silva, E.A., Mansson-Broberg, A., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)CrossRef Hao, X., Silva, E.A., Mansson-Broberg, A., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)CrossRef
74.
go back to reference Tsur-Gang, O., Ruvinov, E., Landa, N., et al.: The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30(2), 189–195 (2009)CrossRef Tsur-Gang, O., Ruvinov, E., Landa, N., et al.: The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30(2), 189–195 (2009)CrossRef
75.
go back to reference Yu, J., Gu, Y., Du, K.T., et al.: The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5), 751–756 (2009)CrossRef Yu, J., Gu, Y., Du, K.T., et al.: The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5), 751–756 (2009)CrossRef
76.
go back to reference Zimmermann, W.H., Fink, C., Kralisch, D., et al.: Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68(1), 106–114 (2000)CrossRef Zimmermann, W.H., Fink, C., Kralisch, D., et al.: Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68(1), 106–114 (2000)CrossRef
77.
go back to reference Zimmermann, W.H., Schneiderbanger, K., Schubert, P., et al.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90(2), 223–230 (2002)CrossRef Zimmermann, W.H., Schneiderbanger, K., Schubert, P., et al.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90(2), 223–230 (2002)CrossRef
78.
go back to reference Zimmermann, W.H., Didie, M., Wasmeier, G.H., et al.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002) Zimmermann, W.H., Didie, M., Wasmeier, G.H., et al.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002)
79.
go back to reference Zimmermann, W.H., Melnychenko, I., Wasmeier, G., et al.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)CrossRef Zimmermann, W.H., Melnychenko, I., Wasmeier, G., et al.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)CrossRef
80.
go back to reference Naito, H., Melnychenko, I., Didie, M., et al.: Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(Suppl 1), I72–I78 (2006) Naito, H., Melnychenko, I., Didie, M., et al.: Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(Suppl 1), I72–I78 (2006)
81.
go back to reference Yildirim, Y., Naito, H., Didie, M., et al.: Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116(Suppl 11), I16–I23 (2007) Yildirim, Y., Naito, H., Didie, M., et al.: Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116(Suppl 11), I16–I23 (2007)
82.
go back to reference Guo, X.M., Zhao, Y.S., Chang, H.X., et al.: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18), 2229–2237 (2006)CrossRef Guo, X.M., Zhao, Y.S., Chang, H.X., et al.: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18), 2229–2237 (2006)CrossRef
83.
go back to reference Shimizu, T., Yamato, M., Kikuchi, A., et al.: Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7(2), 141–151 (2001)CrossRef Shimizu, T., Yamato, M., Kikuchi, A., et al.: Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7(2), 141–151 (2001)CrossRef
84.
go back to reference Shimizu, T., Yamato, M., Isoi, Y., et al.: Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3), e40 (2002)CrossRef Shimizu, T., Yamato, M., Isoi, Y., et al.: Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3), e40 (2002)CrossRef
85.
go back to reference Shimizu, T., Sekine, H., Isoi, Y., et al.: Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 12(3), 499–507 (2006)CrossRef Shimizu, T., Sekine, H., Isoi, Y., et al.: Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 12(3), 499–507 (2006)CrossRef
86.
go back to reference Sekine, H., Shimizu, T., Yang, J., et al.: Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation 114(Suppl 1), I87–I93 (2006) Sekine, H., Shimizu, T., Yang, J., et al.: Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation 114(Suppl 1), I87–I93 (2006)
87.
go back to reference Sekine, H., Shimizu, T., Kosaka, S., et al.: Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J. Heart Lung Transpl. 25(3), 324–332 (2006)CrossRef Sekine, H., Shimizu, T., Kosaka, S., et al.: Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J. Heart Lung Transpl. 25(3), 324–332 (2006)CrossRef
88.
go back to reference Miyahara, Y., Nagaya, N., Kataoka, M., et al.: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12(4), 459–465 (2006)CrossRef Miyahara, Y., Nagaya, N., Kataoka, M., et al.: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12(4), 459–465 (2006)CrossRef
89.
go back to reference Sekine, H., Shimizu, T., Hobo, K., et al.: Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(Suppl 14), S145–S152 (2008)CrossRef Sekine, H., Shimizu, T., Hobo, K., et al.: Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(Suppl 14), S145–S152 (2008)CrossRef
90.
go back to reference Badylak, S., Obermiller, J., Geddes, L., et al.: Extracellular matrix for myocardial repair. Heart Surg. Forum. 6(2), E20–E26 (2003) Badylak, S., Obermiller, J., Geddes, L., et al.: Extracellular matrix for myocardial repair. Heart Surg. Forum. 6(2), E20–E26 (2003)
91.
go back to reference Robinson, K.A., Li, J., Mathison, M., et al.: Extracellular matrix scaffold for cardiac repair. Circulation 112(Suppl 9), I135–I143 (2005) Robinson, K.A., Li, J., Mathison, M., et al.: Extracellular matrix scaffold for cardiac repair. Circulation 112(Suppl 9), I135–I143 (2005)
92.
go back to reference Kochupura, P.V., Azeloglu, E.U., Kelly, D.J., et al.: Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation 112(Suppl 9), I144–I149 (2005) Kochupura, P.V., Azeloglu, E.U., Kelly, D.J., et al.: Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation 112(Suppl 9), I144–I149 (2005)
93.
go back to reference Badylak, S.F., Kochupura, P.V., Cohen, I.S., et al.: The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transpl. (15 Suppl 1), S29–S40 (2006)CrossRef Badylak, S.F., Kochupura, P.V., Cohen, I.S., et al.: The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transpl. (15 Suppl 1), S29–S40 (2006)CrossRef
94.
go back to reference Kelly, D.J., Rosen, A.B., Schuldt, A.J., et al.: Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Eng. Part A 15(8), 2189–2201 (2009)CrossRef Kelly, D.J., Rosen, A.B., Schuldt, A.J., et al.: Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Eng. Part A 15(8), 2189–2201 (2009)CrossRef
95.
go back to reference Potapova, I.A., Doronin, S.V., Kelly, D.J., et al.: Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage. Am. J. Physiol. Heart Circ. Physiol. 295(6), H2257–H2263 (2008)CrossRef Potapova, I.A., Doronin, S.V., Kelly, D.J., et al.: Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage. Am. J. Physiol. Heart Circ. Physiol. 295(6), H2257–H2263 (2008)CrossRef
96.
go back to reference Tan, M.Y., Zhi, W., Wei, R.Q., et al.: Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30(19), 3234–3240 (2009)CrossRef Tan, M.Y., Zhi, W., Wei, R.Q., et al.: Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30(19), 3234–3240 (2009)CrossRef
97.
go back to reference Singelyn, J.M., DeQuach, J.A., Seif-Naraghi, S.B., et al.: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29), 5409–5416 (2009)CrossRef Singelyn, J.M., DeQuach, J.A., Seif-Naraghi, S.B., et al.: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29), 5409–5416 (2009)CrossRef
98.
go back to reference Eitan, Y., Sarig, U., Dahan, N., et al.: Acellular cardiac extracellular matrix as a scaffold for tissue engineering: In vitro cell support, remodeling and biocompatibility. Tissue. Eng. Part C Methods 16(4), 671–683 (2010) Eitan, Y., Sarig, U., Dahan, N., et al.: Acellular cardiac extracellular matrix as a scaffold for tissue engineering: In vitro cell support, remodeling and biocompatibility. Tissue. Eng. Part C Methods 16(4), 671–683 (2010)
99.
go back to reference Seif-Naraghi, S.B., Salvatore, M.A., Schup-Magoffin, P.J., et al.: Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. Part A 16(6), 2017–2027 (2010) Seif-Naraghi, S.B., Salvatore, M.A., Schup-Magoffin, P.J., et al.: Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. Part A 16(6), 2017–2027 (2010)
100.
go back to reference Crapo, P.M., Wang, Y.: Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta. Biomater. 6(6), 2091–2096 (2010) Crapo, P.M., Wang, Y.: Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta. Biomater. 6(6), 2091–2096 (2010)
101.
go back to reference Ott, H.C., Matthiesen, T.S., Goh, S.K., et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)CrossRef Ott, H.C., Matthiesen, T.S., Goh, S.K., et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)CrossRef
102.
go back to reference Bursac, N., Papadaki, M., Cohen, R.J., et al.: Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277(2 Pt 2), H433–H444 (1999) Bursac, N., Papadaki, M., Cohen, R.J., et al.: Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277(2 Pt 2), H433–H444 (1999)
103.
go back to reference Papadaki, M., Bursac, N., Langer, R., et al.: Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280(1), H168–H178 (2001) Papadaki, M., Bursac, N., Langer, R., et al.: Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280(1), H168–H178 (2001)
104.
go back to reference Carrier, R.L., Papadaki, M., Rupnick, M., et al.: Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64(5), 580–589 (1999)CrossRef Carrier, R.L., Papadaki, M., Rupnick, M., et al.: Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64(5), 580–589 (1999)CrossRef
105.
go back to reference Lo, H., Kadiyala, S., Guggino, S.E., et al.: Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J. Biomed. Mater. Res. 30(4), 475–484 (1996)CrossRef Lo, H., Kadiyala, S., Guggino, S.E., et al.: Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J. Biomed. Mater. Res. 30(4), 475–484 (1996)CrossRef
106.
go back to reference McDevitt, T.C., Angello, J.C., Whitney, M.L., et al.: In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J. Biomed. Mater. Res. 60(3), 472–479 (2002)CrossRef McDevitt, T.C., Angello, J.C., Whitney, M.L., et al.: In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J. Biomed. Mater. Res. 60(3), 472–479 (2002)CrossRef
107.
go back to reference Zong, X., Bien, H., Chung, C.Y., et al.: Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26), 5330–5338 (2005)CrossRef Zong, X., Bien, H., Chung, C.Y., et al.: Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26), 5330–5338 (2005)CrossRef
108.
go back to reference Bostman, O.M.: Intense granulomatous inflammatory lesions associated with absorbable internal fixation devices made of polyglycolide in ankle fractures. Clin. Orthop. Relat. Res. 278, 193–199 (1992) Bostman, O.M.: Intense granulomatous inflammatory lesions associated with absorbable internal fixation devices made of polyglycolide in ankle fractures. Clin. Orthop. Relat. Res. 278, 193–199 (1992)
109.
go back to reference Taylor, M.S., Daniels, A.U., Andriano, K.P., et al.: Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J. Appl. Biomater. 5(2), 151–157 (1994)CrossRef Taylor, M.S., Daniels, A.U., Andriano, K.P., et al.: Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J. Appl. Biomater. 5(2), 151–157 (1994)CrossRef
110.
go back to reference McDevitt, T.C., Woodhouse, K.A., Hauschka, S.D., et al.: Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A 66(3), 586–595 (2003)CrossRef McDevitt, T.C., Woodhouse, K.A., Hauschka, S.D., et al.: Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A 66(3), 586–595 (2003)CrossRef
111.
go back to reference Siepe, M., Giraud, M.N., Liljensten, E., et al.: Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif. Organs 31(6), 425–433 (2007)CrossRef Siepe, M., Giraud, M.N., Liljensten, E., et al.: Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif. Organs 31(6), 425–433 (2007)CrossRef
112.
go back to reference Siepe, M., Giraud, M.N., Pavlovic, M., et al.: Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J. Thorac. Cardiovasc. Surg. 132(1), 124–131 (2006) Siepe, M., Giraud, M.N., Pavlovic, M., et al.: Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J. Thorac. Cardiovasc. Surg. 132(1), 124–131 (2006)
113.
go back to reference Shin, M., Ishii, O., Sueda, T., et al.: Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25(17), 3717–3723 (2004)CrossRef Shin, M., Ishii, O., Sueda, T., et al.: Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25(17), 3717–3723 (2004)CrossRef
114.
go back to reference Ishii, O., Shin, M., Sueda, T., et al.: In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J. Thorac. Cardiovasc. Surg. 130(5), 1358–1363 (2005)CrossRef Ishii, O., Shin, M., Sueda, T., et al.: In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J. Thorac. Cardiovasc. Surg. 130(5), 1358–1363 (2005)CrossRef
115.
go back to reference Ashton, R.S., Banerjee, A., Punyani, S., et al.: Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28(36), 5518–5525 (2007)CrossRef Ashton, R.S., Banerjee, A., Punyani, S., et al.: Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28(36), 5518–5525 (2007)CrossRef
116.
go back to reference Dai, N.T., Williamson, M.R., Khammo, N., et al.: Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25(18), 4263–4271 (2004)CrossRef Dai, N.T., Williamson, M.R., Khammo, N., et al.: Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25(18), 4263–4271 (2004)CrossRef
117.
go back to reference Mei, N., Chen, G., Zhou, P., et al.: Biocompatibility of poly(epsilon-caprolactone) scaffold modified by chitosan–the fibroblasts proliferation in vitro. J. Biomater. Appl. 19(4), 323–339 (2005)CrossRef Mei, N., Chen, G., Zhou, P., et al.: Biocompatibility of poly(epsilon-caprolactone) scaffold modified by chitosan–the fibroblasts proliferation in vitro. J. Biomater. Appl. 19(4), 323–339 (2005)CrossRef
118.
go back to reference Pankajakshan, D., Krishnan, V.K., Krishnan, L.K.: Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. J. Tissue Eng. Regen. Med. 1(5), 389–397 (2007)CrossRef Pankajakshan, D., Krishnan, V.K., Krishnan, L.K.: Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. J. Tissue Eng. Regen. Med. 1(5), 389–397 (2007)CrossRef
119.
go back to reference Ma, Z., He, W., Yong, T., et al.: Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng. 11(7–8), 1149–1158 (2005)CrossRef Ma, Z., He, W., Yong, T., et al.: Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng. 11(7–8), 1149–1158 (2005)CrossRef
120.
go back to reference Chen, Q.Z., Ishii, H., Thouas, G.A., et al.: An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31(14), 3885–3893 (2010)CrossRef Chen, Q.Z., Ishii, H., Thouas, G.A., et al.: An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31(14), 3885–3893 (2010)CrossRef
Metadata
Title
Tissue Engineering for Cardiac Regeneration
Authors
Roberto Gaetani
Pieter A. F. Doevendans
Elisa Messina
Joost P. G. Sluijter
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2011_82