Skip to main content
Top

2025 | OriginalPaper | Chapter

Topological Optimization of a Car Module with TRIZ and Machine Learning

Authors : Stelian Brad, Dana Ioana Rat

Published in: World Conference of AI-Powered Innovation and Inventive Design

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study explores a methodology for the topological optimization of car modules by integrating TRIZ (Theory of Inventive Problem Solving) and machine learning techniques. Initially, TRIZ principles guide the qualitative optimization phase, establishing proper design directions aimed at weight reduction and durability enhancement. Following this, machine learning tools, including ARRK’s proprietary algorithms, are applied for precise parametric optimization, ensuring alignment with performance criteria. The findings demonstrate the efficacy of this integrated approach, significantly improving car module design by refining geometrical proportions and achieving dual objectives: weight reduction and enhanced strength. While the study highlights the potential of combining TRIZ and machine learning, it acknowledges limitations due to the use of freely available 3D models and the proprietary nature of certain algorithms. Nonetheless, this research provides a comprehensive framework for automotive engineers and designers, setting a new benchmark for incorporating qualitative insights into the quantitative optimization of complex systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post-2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)MathSciNetCrossRef Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post-2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)MathSciNetCrossRef
2.
go back to reference Gradišar, L., Klinc, R., Turk, Ž, Dolenc, M.: Generative design methodology and framework exploiting designer-algorithm synergies. Buildings 12, 2194 (2022)CrossRef Gradišar, L., Klinc, R., Turk, Ž, Dolenc, M.: Generative design methodology and framework exploiting designer-algorithm synergies. Buildings 12, 2194 (2022)CrossRef
4.
go back to reference Fang, S., Li, M., Liu, L., Han, X., Duan, B., Qin, L.: A quantitative and optimization model for microstructure uniformity of sinter based on multiple regression-NSGA2. Metals 14(2), 169 (2024)CrossRef Fang, S., Li, M., Liu, L., Han, X., Duan, B., Qin, L.: A quantitative and optimization model for microstructure uniformity of sinter based on multiple regression-NSGA2. Metals 14(2), 169 (2024)CrossRef
5.
go back to reference Hurme, M., Järveläinen, M., Parsons, S., Dohnal, M.: A qualitative commonsense method for optimization of complex engineering systems. Eng. Optim. 20(4), 323–339 (1993)CrossRef Hurme, M., Järveläinen, M., Parsons, S., Dohnal, M.: A qualitative commonsense method for optimization of complex engineering systems. Eng. Optim. 20(4), 323–339 (1993)CrossRef
6.
go back to reference Altshuller, G.: The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center Inc, New York (1999) Altshuller, G.: The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center Inc, New York (1999)
7.
go back to reference Cascini, G., Cugini, U., Frillici, F.S., Rotini, F.: Computer-aided conceptual design through TRIZ-based manipulation of topological optimizations. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, UK, p. 263, 30–31 March 2009 Cascini, G., Cugini, U., Frillici, F.S., Rotini, F.: Computer-aided conceptual design through TRIZ-based manipulation of topological optimizations. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, UK, p. 263, 30–31 March 2009
8.
go back to reference Cardillo, A., Cascini, G., Frillici, F.S., Rotini, F.: A novel paradigm for computer-aided design: TRIZ-based hybridization of topologically optimized density distributions. In: Tan, R., Cao, G., León, N. (eds.), CAI 2009, IFIP AICT 304, pp. 38–50. Springer (2009) Cardillo, A., Cascini, G., Frillici, F.S., Rotini, F.: A novel paradigm for computer-aided design: TRIZ-based hybridization of topologically optimized density distributions. In: Tan, R., Cao, G., León, N. (eds.), CAI 2009, IFIP AICT 304, pp. 38–50. Springer (2009)
9.
go back to reference Cascini, G., Rissone, P., Rotini, F., Russo, D.: Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 9, 674–679 (2011)CrossRef Cascini, G., Rissone, P., Rotini, F., Russo, D.: Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 9, 674–679 (2011)CrossRef
10.
go back to reference Gatel, L., Lauvernet, C., Carluer, N., Weill, S., Paniconi, C.: Sobol global sensitivity analysis of a coupled surface/subsurface water flow and reactive solute transfer model on a real hillslope. Water 12(1), 121 (2020)CrossRef Gatel, L., Lauvernet, C., Carluer, N., Weill, S., Paniconi, C.: Sobol global sensitivity analysis of a coupled surface/subsurface water flow and reactive solute transfer model on a real hillslope. Water 12(1), 121 (2020)CrossRef
11.
go back to reference Li, Z., Bucior, B.J., Chen, H., Haranczyk, M., Siepmann, J.I., Snurr, R.Q.: Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: application to short alkanes and Xe/Kr mixtures. J. Chem. Phys. 155(1), 014701 (2021)CrossRef Li, Z., Bucior, B.J., Chen, H., Haranczyk, M., Siepmann, J.I., Snurr, R.Q.: Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: application to short alkanes and Xe/Kr mixtures. J. Chem. Phys. 155(1), 014701 (2021)CrossRef
12.
go back to reference Kumar, S., Chong, I.: Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states. Int. J. Environ. Res. Public Health 15(12), 2907 (2018)CrossRef Kumar, S., Chong, I.: Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states. Int. J. Environ. Res. Public Health 15(12), 2907 (2018)CrossRef
13.
go back to reference Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)CrossRef Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)CrossRef
14.
go back to reference Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)MathSciNet Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)MathSciNet
15.
go back to reference Montazer, G.A., Giveki, D., Karami, M., Rastegar, H.: Radial basis function neural networks: A review. Comput. Rev. J. 1(1) (2018) Montazer, G.A., Giveki, D., Karami, M., Rastegar, H.: Radial basis function neural networks: A review. Comput. Rev. J. 1(1) (2018)
16.
go back to reference Sobol, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993) Sobol, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)
Metadata
Title
Topological Optimization of a Car Module with TRIZ and Machine Learning
Authors
Stelian Brad
Dana Ioana Rat
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_6

Premium Partner