Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 3/2022

01-03-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Topologically Nontrivial Spin Textures in Thin Magnetic Films

Authors: A. S. Samardak, A. G. Kolesnikov, A. V. Davydenko, M. E. Steblii, A. V. Ognev

Published in: Physics of Metals and Metallography | Issue 3/2022

Login to get access
share
SHARE

Abstract

The results of advanced research in the developing field of modern magnetism and spintronics, namely, topological nanomagnetism, in the framework of which the nature of the nontrivial spin textures and topological effects is studied, are reported. Most attention is paid to chiral spin textures that are recently discovered in thin magnetic films, such as skyrmions, skyrmioniums, antiskyrmions, and others, as well as to their static and dynamic properties, methods for their generation and control, and the prospects for creating functional devices based on them. Interest in one-, two-, and three-dimensional magnetic structures is driven not only by the range of new properties and effects that require further theoretical and experimental studies, but also by the potential for their applications in practice. The possibility of generating small and stable magnetic textures, such as skyrmions, opens up prospects for creating new types of random access memory and configurable logic, and for developing neuromorphic computation systems.
Literature
1.
go back to reference A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” C. R. Phys. 20, No. 7, 817–831 (2019). CrossRef A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” C. R. Phys. 20, No. 7, 817–831 (2019). CrossRef
2.
go back to reference A. Manchon and A. Belabbes, Chapter One – Spin-Orbitronics at Transition Metal Interfaces, Solid State Physics, Ed. by R. E. Camley and R. L. Stamps (Academic, 2017), pp. 1–89. A. Manchon and A. Belabbes, Chapter One – Spin-Orbitronics at Transition Metal Interfaces, Solid State Physics, Ed. by R. E. Camley and R. L. Stamps (Academic, 2017), pp. 1–89.
3.
go back to reference S. Ghosh and S. Grytsiuk, Chapter One – Orbitronics with uniform and nonuniform magnetic structures, Solid State Physics, Ed. by R. L. Stamps (Academic, 2020), pp. 1–38. S. Ghosh and S. Grytsiuk, Chapter One – Orbitronics with uniform and nonuniform magnetic structures, Solid State Physics, Ed. by R. L. Stamps (Academic, 2020), pp. 1–38.
4.
go back to reference A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2, No. 7, 17031 (2017). CrossRef A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2, No. 7, 17031 (2017). CrossRef
5.
go back to reference H. Vakili, W. Zhou, C. T. Ma, S. J. Poon, M. G. Morshed, M. N. Sakib, S. Ganguly, M. Stan, T. Q. Hartnett, P. Balachandran, J. -W. Xu, Y. Quessab, A. D. Kent, K. Litzius, G. S. D. Beach, and A. W. Ghosh, “Skyrmionics–Computing and memory technologies based on topological excitations in magnets,” J. Appl. Phys. 130, No. 7, 070908 (2021). CrossRef H. Vakili, W. Zhou, C. T. Ma, S. J. Poon, M. G. Morshed, M. N. Sakib, S. Ganguly, M. Stan, T. Q. Hartnett, P. Balachandran, J. -W. Xu, Y. Quessab, A. D. Kent, K. Litzius, G. S. D. Beach, and A. W. Ghosh, “Skyrmionics–Computing and memory technologies based on topological excitations in magnets,” J. Appl. Phys. 130, No. 7, 070908 (2021). CrossRef
6.
go back to reference J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotechnol. 8, No. 11, 839–844 (2013). CrossRef J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotechnol. 8, No. 11, 839–844 (2013). CrossRef
7.
go back to reference R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1, No. 7, 16044 (2016). CrossRef R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1, No. 7, 16044 (2016). CrossRef
8.
go back to reference A. Polyakov and A. Belavin, “Metastable states of two-dimensional isotropic ferromagnets,” JETP Lett. 22, No, 503–506 (1975). A. Polyakov and A. Belavin, “Metastable states of two-dimensional isotropic ferromagnets,” JETP Lett. 22, No, 503–506 (1975).
9.
go back to reference A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nat. 548, No. 7669, 561–566 (2017). CrossRef A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nat. 548, No. 7669, 561–566 (2017). CrossRef
10.
go back to reference K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kläui, “Perspective: Magnetic skyrmions–Overview of recent progress in an active research field,” J. Appl. Phys. 124, No. 24, 240901 (2018). CrossRef K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kläui, “Perspective: Magnetic skyrmions–Overview of recent progress in an active research field,” J. Appl. Phys. 124, No. 24, 240901 (2018). CrossRef
11.
go back to reference M. T. Birch, D. Cortés-Ortuño, L. A. Turnbull, M. N. Wilson, F. Groß, N. Träger, A. Laurenson, N. Bukin, S. H. Moody, M. Weigand, G. Schütz, H. Popescu, R. Fan, P. Steadman, J. A. T. Verezhak, G. Balakrishnan, J. C. Loudon, A. C. Twitchett-Harrison, O. Hovorka, H. Fangohr, F. Y. Ogrin, J. Gräfe, and P. D. Hatton, “Real-space imaging of confined magnetic skyrmion tubes,” Nat. Commun. 11, No. 1, 1726 (2020). CrossRef M. T. Birch, D. Cortés-Ortuño, L. A. Turnbull, M. N. Wilson, F. Groß, N. Träger, A. Laurenson, N. Bukin, S. H. Moody, M. Weigand, G. Schütz, H. Popescu, R. Fan, P. Steadman, J. A. T. Verezhak, G. Balakrishnan, J. C. Loudon, A. C. Twitchett-Harrison, O. Hovorka, H. Fangohr, F. Y. Ogrin, J. Gräfe, and P. D. Hatton, “Real-space imaging of confined magnetic skyrmion tubes,” Nat. Commun. 11, No. 1, 1726 (2020). CrossRef
12.
go back to reference F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, No. 6, 451–455 (2018). CrossRef F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, No. 6, 451–455 (2018). CrossRef
13.
go back to reference N. Kent, N. Reynolds, D. Raftrey, I. T. G. Campbell, S. Virasawmy, S. Dhuey, R. V. Chopdekar, A. Hierro-Rodriguez, A. Sorrentino, E. Pereiro, S. Ferrer, F. Hellman, P. Sutcliffe, and P. Fischer, “Creation and observation of Hopfions in magnetic multilayer systems,” Nat. Commun. 12, No. 1, 1562 (2021). CrossRef N. Kent, N. Reynolds, D. Raftrey, I. T. G. Campbell, S. Virasawmy, S. Dhuey, R. V. Chopdekar, A. Hierro-Rodriguez, A. Sorrentino, E. Pereiro, S. Ferrer, F. Hellman, P. Sutcliffe, and P. Fischer, “Creation and observation of Hopfions in magnetic multilayer systems,” Nat. Commun. 12, No. 1, 1562 (2021). CrossRef
14.
go back to reference I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids 4, No. 4, 241–255 (1958). CrossRef I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids 4, No. 4, 241–255 (1958). CrossRef
15.
go back to reference T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, No. 1, 91–98 (1960). CrossRef T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, No. 1, 91–98 (1960). CrossRef
16.
go back to reference A. G. Kolesnikov, M. E. Stebliy, A. V. Davydenko, A. G. Kozlov, I. S. Osmushko, V. V. Korochentsev, A. V. Ognev, A. V. Gerasimenko, A. V. Sadovnikov, V. A. Gubanov, S. A. Nikitov, X. Wang, C. H. Wan, C. Fang, M. Zhao, X. F. Han, and A. Samardak, “Magnetic properties and the interfacial Dzyaloshinskii–Moriya interaction in exchange biased Pt/Co/Ni xO y films,” Appl. Surf. Sci. 543, 148720 (2021). CrossRef A. G. Kolesnikov, M. E. Stebliy, A. V. Davydenko, A. G. Kozlov, I. S. Osmushko, V. V. Korochentsev, A. V. Ognev, A. V. Gerasimenko, A. V. Sadovnikov, V. A. Gubanov, S. A. Nikitov, X. Wang, C. H. Wan, C. Fang, M. Zhao, X. F. Han, and A. Samardak, “Magnetic properties and the interfacial Dzyaloshinskii–Moriya interaction in exchange biased Pt/Co/Ni xO y films,” Appl. Surf. Sci. 543, 148720 (2021). CrossRef
17.
go back to reference F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L. Zink, “Interface-induced phenomena in magnetism,” Rev. Mod. Phys. 89, No. 2, 025006 (2017). CrossRef F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L. Zink, “Interface-induced phenomena in magnetism,” Rev. Mod. Phys. 89, No. 2, 025006 (2017). CrossRef
18.
go back to reference M. Heide, G. Bihlmayer, and S. Blügel, “Dzya-loshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110),” Phys. Rev. B 78, No. 14, 140403 (2008). CrossRef M. Heide, G. Bihlmayer, and S. Blügel, “Dzya-loshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110),” Phys. Rev. B 78, No. 14, 140403 (2008). CrossRef
19.
go back to reference G. W. Kim, A. S. Samardak, Y. J. Kim, I. H. Cha, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, and Y. K. Kim, “Role of the heavy metal’s crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial dzyaloshinskii-moriya interaction in W/CoFeB/MgO films,” Phys. Rev. Appl. 9, No. 6, 064005 (2018). CrossRef G. W. Kim, A. S. Samardak, Y. J. Kim, I. H. Cha, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, and Y. K. Kim, “Role of the heavy metal’s crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial dzyaloshinskii-moriya interaction in W/CoFeB/MgO films,” Phys. Rev. Appl. 9, No. 6, 064005 (2018). CrossRef
20.
go back to reference A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty, A. Ognev, Enhanced interfacial Dzya-loshinskii–Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films, Appl. Phys. Lett. 2018 112, No. 19, 192406. CrossRef A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty, A. Ognev, Enhanced interfacial Dzya-loshinskii–Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films, Appl. Phys. Lett. 2018 112, No. 19, 192406. CrossRef
21.
go back to reference S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915 (2009). CrossRef S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915 (2009). CrossRef
22.
go back to reference C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy, N. Nagaosa, S. S. P. Parkin, C. Pfleiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang, “The 2020 skyrmionics roadmap,” J. Phys. D: Appl. Phys. 53, No. 36, 363001 (2020). CrossRef C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy, N. Nagaosa, S. S. P. Parkin, C. Pfleiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang, “The 2020 skyrmionics roadmap,” J. Phys. D: Appl. Phys. 53, No. 36, 363001 (2020). CrossRef
23.
go back to reference B. Göbel, I. Mertig, and O. A. Tretiakov, “Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles,” Phys. Rep. 895, 1–28 (2021). CrossRef B. Göbel, I. Mertig, and O. A. Tretiakov, “Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles,” Phys. Rep. 895, 1–28 (2021). CrossRef
24.
go back to reference S. Luo and L. You, “Skyrmion devices for memory and logic applications,” APL Mater. 9, No. 5, 050901 (2021). CrossRef S. Luo and L. You, “Skyrmion devices for memory and logic applications,” APL Mater. 9, No. 5, 050901 (2021). CrossRef
25.
go back to reference M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, No. 21, 2472–2475 (1988). CrossRef M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, No. 21, 2472–2475 (1988). CrossRef
26.
go back to reference G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, No. 7, 4828–4830 (1989). CrossRef G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, No. 7, 4828–4830 (1989). CrossRef
27.
go back to reference T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al 2O 3/Fe junction,” J. Magn. Magn. Mater 139, No. 3, 231–234 (1995). CrossRef T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al 2O 3/Fe junction,” J. Magn. Magn. Mater 139, No. 3, 231–234 (1995). CrossRef
28.
go back to reference J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, No. 16, 3273–3276 (1995). CrossRef J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, No. 16, 3273–3276 (1995). CrossRef
29.
go back to reference M. I. Dyakonov and V. I. Perel, “Current-induced spin orientation of electrons in semiconductors,” Phys. Lett. A 35, No. 6, 459–460 (1971). CrossRef M. I. Dyakonov and V. I. Perel, “Current-induced spin orientation of electrons in semiconductors,” Phys. Lett. A 35, No. 6, 459–460 (1971). CrossRef
30.
go back to reference J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, No. 9, 1834–1837 (1999). CrossRef J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, No. 9, 1834–1837 (1999). CrossRef
31.
go back to reference J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin Hall effects,” Rev. Mod. Phys. 87, No. 4, 1213–1260 (2015). CrossRef J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin Hall effects,” Rev. Mod. Phys. 87, No. 4, 1213–1260 (2015). CrossRef
32.
go back to reference A. R. Fert, “Magnetic and transport properties of metallic multilayers,” Mater. Sci. Forum 59– 60, 439–480 (1991). CrossRef A. R. Fert, “Magnetic and transport properties of metallic multilayers,” Mater. Sci. Forum 5960, 439–480 (1991). CrossRef
33.
go back to reference J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, No. 1, L1–L7 (1996). CrossRef J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, No. 1, L1–L7 (1996). CrossRef
34.
go back to reference A. Brataas, A. D. Kent, and H. Ohno, “Current-induced torques in magnetic materials,” Nat. Mater. 11, No. 5, 372–381 (2012). CrossRef A. Brataas, A. D. Kent, and H. Ohno, “Current-induced torques in magnetic materials,” Nat. Mater. 11, No. 5, 372–381 (2012). CrossRef
35.
go back to reference S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall racetrack memory,” Science 320, No. 5873, 190 (2008). CrossRef S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall racetrack memory,” Science 320, No. 5873, 190 (2008). CrossRef
36.
go back to reference I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, No. 2, 323–410 (2004). CrossRef I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, No. 2, 323–410 (2004). CrossRef
37.
go back to reference R. Schäfer, P. M. Oppeneer, A. V. Ognev, A. S. Samardak, and I. V. Soldatov, “Analyzer-free, intensity-based, wide-field magneto-optical microscopy,” Appl. Phys. Rev. 8, No. 3, 031402 (2021). CrossRef R. Schäfer, P. M. Oppeneer, A. V. Ognev, A. S. Samardak, and I. V. Soldatov, “Analyzer-free, intensity-based, wide-field magneto-optical microscopy,” Appl. Phys. Rev. 8, No. 3, 031402 (2021). CrossRef
38.
go back to reference A. A. Stashkevich, “Spin-orbitronics a novel trend in spin oriented electronics,” J. Russ. Univ. Radioelectron. 22, No. 6, 45–54 (2019). CrossRef A. A. Stashkevich, “Spin-orbitronics a novel trend in spin oriented electronics,” J. Russ. Univ. Radioelectron. 22, No. 6, 45–54 (2019). CrossRef
39.
go back to reference Y. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, and K. Wang, “Prospect of spin-orbitronic devices and their applications,” Science 23, No. 10, 101614 (2020). Y. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, and K. Wang, “Prospect of spin-orbitronic devices and their applications,” Science 23, No. 10, 101614 (2020).
40.
go back to reference Y. Dong, T. Xu, H. -A. Zhou, L. Cai, H. Wu, J. Tang, and W. Jiang, “Electrically reconfigurable 3D spin-orbitronics,” Adv. Funct. Mater. 31, No. 9, 2007485 (2021). CrossRef Y. Dong, T. Xu, H. -A. Zhou, L. Cai, H. Wu, J. Tang, and W. Jiang, “Electrically reconfigurable 3D spin-orbitronics,” Adv. Funct. Mater. 31, No. 9, 2007485 (2021). CrossRef
41.
go back to reference K. -W. Kim, H. -W. Lee, K. -J. Lee, and M. D. Stiles, “Chirality from interfacial spin-orbit coupling effects in magnetic bilayers,” Phys. Rev. Lett. 111, No. 21, 216601 (2013). CrossRef K. -W. Kim, H. -W. Lee, K. -J. Lee, and M. D. Stiles, “Chirality from interfacial spin-orbit coupling effects in magnetic bilayers,” Phys. Rev. Lett. 111, No. 21, 216601 (2013). CrossRef
42.
go back to reference T. Kim, I. H. Cha, Y. J. Kim, G. W. Kim, A. Stashke-vich, Y. Roussigne, M. Belmeguenai, S. M. Cherif, A. S. Samardak, and Y. K. Kim, “Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures,” Nat. Commun. 12, No. 1, 3280 (2021). CrossRef T. Kim, I. H. Cha, Y. J. Kim, G. W. Kim, A. Stashke-vich, Y. Roussigne, M. Belmeguenai, S. M. Cherif, A. S. Samardak, and Y. K. Kim, “Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures,” Nat. Commun. 12, No. 1, 3280 (2021). CrossRef
43.
go back to reference P. Gambardella and I. M. Miron, “Current-induced spin–orbit torques,” Philos. Trans. R. Soc., A 369, No. 1948, 3175–3197 (2011). P. Gambardella and I. M. Miron, “Current-induced spin–orbit torques,” Philos. Trans. R. Soc., A 369, No. 1948, 3175–3197 (2011).
44.
go back to reference M. E. Stebliy, A. G. Kolesnikov, A. V. Ognev, A. V. Davydenko, E. V. Stebliy, X. Wang, X. Han, and A. S. Samardak, “Advanced method for the reliable estimation of spin-orbit-torque efficiency in low-coercivity ferromagnetic multilayers,” Phys. Rev. Appl. 11, No. 5, 054047 (2019). CrossRef M. E. Stebliy, A. G. Kolesnikov, A. V. Ognev, A. V. Davydenko, E. V. Stebliy, X. Wang, X. Han, and A. S. Samardak, “Advanced method for the reliable estimation of spin-orbit-torque efficiency in low-coercivity ferromagnetic multilayers,” Phys. Rev. Appl. 11, No. 5, 054047 (2019). CrossRef
45.
go back to reference C. H. Wan, M. E. Stebliy, X. Wang, G. Q. Yu, X. F. Han, A. G. Kolesnikov, M. A. Bazrov, M. E. Letushev, A. V. Ognev, and A. S. Samardak, “Gradual magnetization switching via domain nucleation driven by spin–orbit torque,” Appl. Phys. Lett. 118, No. 3, 032407 (2021). CrossRef C. H. Wan, M. E. Stebliy, X. Wang, G. Q. Yu, X. F. Han, A. G. Kolesnikov, M. A. Bazrov, M. E. Letushev, A. V. Ognev, and A. S. Samardak, “Gradual magnetization switching via domain nucleation driven by spin–orbit torque,” Appl. Phys. Lett. 118, No. 3, 032407 (2021). CrossRef
46.
go back to reference S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, “Spintronics based random access memory: a review,” Mater. Today 20, No. 9, 530–548 (2017). CrossRef S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, “Spintronics based random access memory: a review,” Mater. Today 20, No. 9, 530–548 (2017). CrossRef
47.
go back to reference Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Akerman, K. Roy, J. P. Wang, S. H. Yang, K. Garello, and W. Zhang, “Roadmap of spin–orbit torques,” IEEE Trans. Magn. 57, No. 7, 1–39 (2021). CrossRef Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Akerman, K. Roy, J. P. Wang, S. H. Yang, K. Garello, and W. Zhang, “Roadmap of spin–orbit torques,” IEEE Trans. Magn. 57, No. 7, 1–39 (2021). CrossRef
48.
go back to reference T. H. R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962). CrossRef T. H. R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962). CrossRef
49.
go back to reference P. Barla, V. K. Joshi, and S. Bhat, “Spintronic devices: a promising alternative to CMOS devices,” J. Comp. Electron. 20, No. 2, 805–837 (2021). CrossRef P. Barla, V. K. Joshi, and S. Bhat, “Spintronic devices: a promising alternative to CMOS devices,” J. Comp. Electron. 20, No. 2, 805–837 (2021). CrossRef
50.
go back to reference G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. Amiri Khalili, and Z. Zeng, “The promise of spintronics for unconventional computing,” J. Magn. Magn. Mater. 521, 167506 (2021). CrossRef G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. Amiri Khalili, and Z. Zeng, “The promise of spintronics for unconventional computing,” J. Magn. Magn. Mater. 521, 167506 (2021). CrossRef
51.
go back to reference J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, No. 7, 360–370 (2020). CrossRef J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, No. 7, 360–370 (2020). CrossRef
52.
go back to reference S. Li, W. Kang, X. Zhang, T. Nie, Y. Zhou, K. L. Wang, and W. Zhao, “Magnetic skyrmions for unconventional computing,” Mater. Horizons 8, No. 3, 854–868 (2021). CrossRef S. Li, W. Kang, X. Zhang, T. Nie, Y. Zhou, K. L. Wang, and W. Zhao, “Magnetic skyrmions for unconventional computing,” Mater. Horizons 8, No. 3, 854–868 (2021). CrossRef
53.
go back to reference B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y. N. Zhou, and Y. A. Wu, “Synaptic devices based neuromorphic computing applications in artificial intelligence,” Mater. Today Phys. 18, 100393 (2021). CrossRef B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y. N. Zhou, and Y. A. Wu, “Synaptic devices based neuromorphic computing applications in artificial intelligence,” Mater. Today Phys. 18, 100393 (2021). CrossRef
54.
go back to reference D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, “Physics for neuromorphic computing,” Nat. Rev. Phys. 2, No. 9, 499–510 (2020). CrossRef D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, “Physics for neuromorphic computing,” Nat. Rev. Phys. 2, No. 9, 499–510 (2020). CrossRef
55.
go back to reference G. Yin, Y. Li, L. Kong, R. K. Lake, C. L. Chien, and J. Zang, “Topological charge analysis of ultrafast single skyrmion creation,” Phys. Rev. B 93, No. 17, 174403 (2016). CrossRef G. Yin, Y. Li, L. Kong, R. K. Lake, C. L. Chien, and J. Zang, “Topological charge analysis of ultrafast single skyrmion creation,” Phys. Rev. B 93, No. 17, 174403 (2016). CrossRef
56.
go back to reference S. Wintz, C. Bunce, A. Neudert, M. Korner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, and J. Fassbender, “Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements,” Phys. Rev. Lett. 110, No. 17, 177201 (2013). CrossRef S. Wintz, C. Bunce, A. Neudert, M. Korner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, and J. Fassbender, “Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements,” Phys. Rev. Lett. 110, No. 17, 177201 (2013). CrossRef
57.
go back to reference H.-B. Braun, “Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons,” Adv. Phys. 61, No. 1, 1–116 (2012). CrossRef H.-B. Braun, “Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons,” Adv. Phys. 61, No. 1, 1–116 (2012). CrossRef
58.
go back to reference A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, “Topological Hall effect in the a phase of MnSi,” Phys. Rev. Lett. 102, No. 18, 186602 (2009). CrossRef A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, “Topological Hall effect in the a phase of MnSi,” Phys. Rev. Lett. 102, No. 18, 186602 (2009). CrossRef
59.
go back to reference X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nat. Commun. 3, 988 (2012). CrossRef X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nat. Commun. 3, 988 (2012). CrossRef
60.
go back to reference W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X. Zhang, Y. Zhou, and W. Zhao, “voltage controlled magnetic skyrmion motion for racetrack memory,” Scientific Rep. 6, 23164 (2016). CrossRef W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X. Zhang, Y. Zhou, and W. Zhao, “voltage controlled magnetic skyrmion motion for racetrack memory,” Scientific Rep. 6, 23164 (2016). CrossRef
61.
go back to reference J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constricted geometries,” Nat. Nanotechnol. 8, 742 (2013). CrossRef J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constricted geometries,” Nat. Nanotechnol. 8, 742 (2013). CrossRef
62.
go back to reference W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, Y. Fradin Frank, E. Pearson John, Y. Tserkovnyak, L. Wang Kang, O. Heinonen, G. E. te Velthuis Suzanne, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349, No. 6245, 283–286 (2015). CrossRef W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, Y. Fradin Frank, E. Pearson John, Y. Tserkovnyak, L. Wang Kang, O. Heinonen, G. E. te Velthuis Suzanne, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349, No. 6245, 283–286 (2015). CrossRef
63.
go back to reference F. Büttner, C. Moutafis, M. Schneider, B. Kruger, C. M. Günther, J. Geilhufe, C. V. K. Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Kläui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11, 225 (2015). CrossRef F. Büttner, C. Moutafis, M. Schneider, B. Kruger, C. M. Günther, J. Geilhufe, C. V. K. Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Kläui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11, 225 (2015). CrossRef
64.
go back to reference S. Woo, K. Litzius, B. Kruger, M. Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Klaui, and G. R. S. D. Beach, “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets,” Nat. Mater. 15, No. 5, 501-506 (2016). CrossRef S. Woo, K. Litzius, B. Kruger, M. Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Klaui, and G. R. S. D. Beach, “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets,” Nat. Mater. 15, No. 5, 501-506 (2016). CrossRef
65.
go back to reference P. Johnson, A. K. Gangopadhyay, R. Kalyanaraman, and Z. Nussinov, “Demagnetization-borne microscale skyrmions,” Phys. Rev. B 86, No. 6, 064427 (2012). CrossRef P. Johnson, A. K. Gangopadhyay, R. Kalyanaraman, and Z. Nussinov, “Demagnetization-borne microscale skyrmions,” Phys. Rev. B 86, No. 6, 064427 (2012). CrossRef
66.
go back to reference M. E. Stebliy, A. G. Kolesnikov, A. V. Davydenko, A. V. Ognev, A. S. Samardak, and L. A. Chebotkevich, “Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy,” J. Appl. Phys. 117, No. 17, 17B529 (2015). M. E. Stebliy, A. G. Kolesnikov, A. V. Davydenko, A. V. Ognev, A. S. Samardak, and L. A. Chebotkevich, “Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy,” J. Appl. Phys. 117, No. 17, 17B529 (2015).
67.
go back to reference A. I. Marchenko and V. N. Krivoruchko, “Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots,” J. Magn. Magn. Mater. 377, 153–158 (2015). CrossRef A. I. Marchenko and V. N. Krivoruchko, “Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots,” J. Magn. Magn. Mater. 377, 153–158 (2015). CrossRef
68.
go back to reference M. V. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Magn. Magn. Mater. 396, 338–344 (2015). CrossRef M. V. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Magn. Magn. Mater. 396, 338–344 (2015). CrossRef
69.
go back to reference M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Y. V. Petrov, “Artificial dense lattice of magnetic bubbles,” Appl. Phys. Lett. 109, No. 4, 042406 (2016). CrossRef M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Y. V. Petrov, “Artificial dense lattice of magnetic bubbles,” Appl. Phys. Lett. 109, No. 4, 042406 (2016). CrossRef
70.
go back to reference N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotechnol. 8, No. 12, 899–911 (2013). CrossRef N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotechnol. 8, No. 12, 899–911 (2013). CrossRef
71.
go back to reference X. S. Wang, H. Y. Yuan, and X. R. Wang, “A theory on skyrmion size,” Commun. Phys. 1, No. 1, 31 (2018). CrossRef X. S. Wang, H. Y. Yuan, and X. R. Wang, “A theory on skyrmion size,” Commun. Phys. 1, No. 1, 31 (2018). CrossRef
72.
go back to reference Y. Ishida and K. Kondo, “Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications,” Jpn. J. App. Phys. 59, No. SG, SGGI04 (2020). Y. Ishida and K. Kondo, “Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications,” Jpn. J. App. Phys. 59, No. SG, SGGI04 (2020).
73.
go back to reference A. G. Kolesnikov, M. E. Stebliy, A. S. Samardak, and A. V. Ognev, “Skyrmionium—high velocity without the skyrmion Hall effect,” Sci. Rep. 8, No. 1, 16966 (2018). CrossRef A. G. Kolesnikov, M. E. Stebliy, A. S. Samardak, and A. V. Ognev, “Skyrmionium—high velocity without the skyrmion Hall effect,” Sci. Rep. 8, No. 1, 16966 (2018). CrossRef
74.
go back to reference A. V. Davydenko, A. G. Kozlov, A. V. Ognev, M. E. Stebliy, A. S. Samardak, K. S. Ermakov, A. G. Kolesnikov, and L. A. Chebotkevich, “Origin of perpendicular magnetic anisotropy in epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 95, No. 6, 064430 (2017). CrossRef A. V. Davydenko, A. G. Kozlov, A. V. Ognev, M. E. Stebliy, A. S. Samardak, K. S. Ermakov, A. G. Kolesnikov, and L. A. Chebotkevich, “Origin of perpendicular magnetic anisotropy in epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 95, No. 6, 064430 (2017). CrossRef
75.
go back to reference Topology in Magnetism. Springer Series in Solid-State Sciences, Ed. by V. C. Jiadong Zang and A. Hoffmann (Springer, Berlin, 2018), Vol. 192. Topology in Magnetism. Springer Series in Solid-State Sciences, Ed. by V. C. Jiadong Zang and A. Hoffmann (Springer, Berlin, 2018), Vol. 192.
76.
go back to reference A. G. Kolesnikov, A. S. Samardak, M. E. Stebliy, A. V. Ognev, L. A. Chebotkevich, A. V. Sadovnikov, S. A. Nikitov, Y. J. Kim, I. H. Cha, and Y. K. Kim, “Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction,” J. Magn. Magn. Mater. 429, 221–226 (2017). CrossRef A. G. Kolesnikov, A. S. Samardak, M. E. Stebliy, A. V. Ognev, L. A. Chebotkevich, A. V. Sadovnikov, S. A. Nikitov, Y. J. Kim, I. H. Cha, and Y. K. Kim, “Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction,” J. Magn. Magn. Mater. 429, 221–226 (2017). CrossRef
77.
go back to reference T. Srivastava, W. Lim, I. Joumard, S. Auffret, C. Baraduc, and H. Béa, “Mapping different skyrmion phases in double wedges of Ta/FeCoB/TaO x trilayers,” Phys. Rev. B 100, No. 22, 220401 (2019). CrossRef T. Srivastava, W. Lim, I. Joumard, S. Auffret, C. Baraduc, and H. Béa, “Mapping different skyrmion phases in double wedges of Ta/FeCoB/TaO x trilayers,” Phys. Rev. B 100, No. 22, 220401 (2019). CrossRef
78.
go back to reference K. -W. Moon, S. Yang, T. -S. Ju, C. Kim, B. S. Chun, S. Park, and C. Hwang, “Universal method for magnetic skyrmion bubble generation by controlling the stripe domain instability,” NPG Asia Mater. 13, No. 1, 20 (2021). CrossRef K. -W. Moon, S. Yang, T. -S. Ju, C. Kim, B. S. Chun, S. Park, and C. Hwang, “Universal method for magnetic skyrmion bubble generation by controlling the stripe domain instability,” NPG Asia Mater. 13, No. 1, 20 (2021). CrossRef
79.
go back to reference M. Schott, L. Ranno, H. Bea, C. Baraduc, S. Auffret, and A. Bernand-Mantel, “Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlOx thin films,” J. Magn. Magn. Mater. 520, 167122 (2021). CrossRef M. Schott, L. Ranno, H. Bea, C. Baraduc, S. Auffret, and A. Bernand-Mantel, “Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlOx thin films,” J. Magn. Magn. Mater. 520, 167122 (2021). CrossRef
80.
go back to reference A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax 3,” AIP Adv. 4, No. 10, 107133 (2014). CrossRef A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax 3,” AIP Adv. 4, No. 10, 107133 (2014). CrossRef
81.
go back to reference A. Bernand-Mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. L. Darques, and L. Ranno, “The skyrmion-bubble transition in a ferromagnetic thin film,” SciPost Phys., No. 5, 027 (2018). A. Bernand-Mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. L. Darques, and L. Ranno, “The skyrmion-bubble transition in a ferromagnetic thin film,” SciPost Phys., No. 5, 027 (2018).
82.
go back to reference K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, No. 4, 044079 (2020). CrossRef K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, No. 4, 044079 (2020). CrossRef
83.
go back to reference J. Wild, T. N. G. Meier, S. Pollath, M. Kronseder, A. Bauer, A. Chacon, M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J. Muller, A. Rosch, C. Pfleiderer, and C. H. Back, “Entropy-limited topological protection of skyrmions,” Sci. Adv. 3, No. 9, e1701704 (2017). CrossRef J. Wild, T. N. G. Meier, S. Pollath, M. Kronseder, A. Bauer, A. Chacon, M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J. Muller, A. Rosch, C. Pfleiderer, and C. H. Back, “Entropy-limited topological protection of skyrmions,” Sci. Adv. 3, No. 9, e1701704 (2017). CrossRef
84.
go back to reference M. Hervé, B. Dupé, R. Lopes, M. Böttcher, M. D. Martins, T. Balashov, L. Gerhard, J. Sinova, and W. Wulfhekel, “Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy,” Nat. Commun. 9, No. 1, 1015 (2018). CrossRef M. Hervé, B. Dupé, R. Lopes, M. Böttcher, M. D. Martins, T. Balashov, L. Gerhard, J. Sinova, and W. Wulfhekel, “Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy,” Nat. Commun. 9, No. 1, 1015 (2018). CrossRef
85.
go back to reference N. S. Kiselev, A. N. Bogdanov, R. Schafer, and U. K. Rossler, “Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?,” J. Phys. D: Appl. Phys. 44, 392001 (2011). N. S. Kiselev, A. N. Bogdanov, R. Schafer, and U. K. Rossler, “Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?,” J. Phys. D: Appl. Phys. 44, 392001 (2011).
86.
go back to reference S. Rohart and A. Thiaville, “Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction,” Phys. Rev. B 88, 184422 (2013). S. Rohart and A. Thiaville, “Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction,” Phys. Rev. B 88, 184422 (2013).
87.
go back to reference A. K. Behera, S. S. Mishra, S. Mallick, B. B. Singh, and S. Bedanta, “Size and shape of skyrmions for variable Dzyaloshinskii–Moriya interaction and uniaxial anisotropy,” J. Phys. D: Appl. Phys. 51, No. 28, 285001 (2018). CrossRef A. K. Behera, S. S. Mishra, S. Mallick, B. B. Singh, and S. Bedanta, “Size and shape of skyrmions for variable Dzyaloshinskii–Moriya interaction and uniaxial anisotropy,” J. Phys. D: Appl. Phys. 51, No. 28, 285001 (2018). CrossRef
88.
go back to reference A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, “Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films,” Europhys. Lett. 100, No. 5, 57002 (2012). CrossRef A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, “Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films,” Europhys. Lett. 100, No. 5, 57002 (2012). CrossRef
89.
go back to reference F. Tejo, A. Riveros, J. Escrig, K. Y. Guslienko, and O. Chubykalo-Fesenko, “Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots,” Sci. Rep. 8, No. 1, 6280 (2018). CrossRef F. Tejo, A. Riveros, J. Escrig, K. Y. Guslienko, and O. Chubykalo-Fesenko, “Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots,” Sci. Rep. 8, No. 1, 6280 (2018). CrossRef
90.
go back to reference K. Zeissler, M. Mruczkiewicz, S. Finizio, J. Raabe, P. M. Shepley, A. V. Sadovnikov, S. A. Nikitov, K. Fallon, S. McFadzean, S. McVitie, T. A. Moore, G. Burnell, and C. H. Marrows, “Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks,” Sci. Rep. 7, No. 1, 15125 (2017). CrossRef K. Zeissler, M. Mruczkiewicz, S. Finizio, J. Raabe, P. M. Shepley, A. V. Sadovnikov, S. A. Nikitov, K. Fallon, S. McFadzean, S. McVitie, T. A. Moore, G. Burnell, and C. H. Marrows, “Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks,” Sci. Rep. 7, No. 1, 15125 (2017). CrossRef
91.
go back to reference R. Tomasello, K. Y. Guslienko, M. Ricci, A. Giordano, J. Barker, M. Carpentieri, O. Chubykalo-Fesenko, and G. Finocchio, “Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots,” Phys. Rev. B 97, No. 6, 060402 (2018). CrossRef R. Tomasello, K. Y. Guslienko, M. Ricci, A. Giordano, J. Barker, M. Carpentieri, O. Chubykalo-Fesenko, and G. Finocchio, “Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots,” Phys. Rev. B 97, No. 6, 060402 (2018). CrossRef
92.
go back to reference M. Goto, H. Nomura, and Y. Suzuki, “Stochastic skyrmion dynamics under alternating magnetic fields,” J. Magn. Magn. Mater. 536, 167974 (2021). CrossRef M. Goto, H. Nomura, and Y. Suzuki, “Stochastic skyrmion dynamics under alternating magnetic fields,” J. Magn. Magn. Mater. 536, 167974 (2021). CrossRef
93.
go back to reference V. L. Zhang, C. G. Hou, K. Di, H. S. Lim, S. C. Ng, S. D. Pollard, H. Yang, and M. H. Kuok, “Eigenmodes of Néel skyrmions in ultrathin magnetic films,” AIP Adv. 7, No. 5, 055212 (2017). CrossRef V. L. Zhang, C. G. Hou, K. Di, H. S. Lim, S. C. Ng, S. D. Pollard, H. Yang, and M. H. Kuok, “Eigenmodes of Néel skyrmions in ultrathin magnetic films,” AIP Adv. 7, No. 5, 055212 (2017). CrossRef
94.
go back to reference M. Mochizuki, “Spin-wave modes and their intense excitation effects in skyrmion crystals,” Phys. Rev. Lett. 108, No. 1, 017601 (2012). CrossRef M. Mochizuki, “Spin-wave modes and their intense excitation effects in skyrmion crystals,” Phys. Rev. Lett. 108, No. 1, 017601 (2012). CrossRef
95.
go back to reference K.-W. Moon, D.-H. Kim, S.-G. Je, B. S. Chun, W. Kim, Z. Q. Qiu, S. -B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, No. 1, 20360 (2016). CrossRef K.-W. Moon, D.-H. Kim, S.-G. Je, B. S. Chun, W. Kim, Z. Q. Qiu, S. -B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, No. 1, 20360 (2016). CrossRef
96.
go back to reference S. L. Zhang, W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, and T. Hesjedal, “Manipulation of skyrmion motion by magnetic field gradients,” Nat. Commun. 9, No. 1, 2115 (2018). CrossRef S. L. Zhang, W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, and T. Hesjedal, “Manipulation of skyrmion motion by magnetic field gradients,” Nat. Commun. 9, No. 1, 2115 (2018). CrossRef
97.
go back to reference A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, “Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems,” Rev. Mod. Phys. 91, No. 3, 035004 (2019). CrossRef A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, “Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems,” Rev. Mod. Phys. 91, No. 3, 035004 (2019). CrossRef
98.
go back to reference K. Everschor-Sitte and M. Sitte, “Real-space Berry phases: Skyrmion soccer,” J. Appl. Phys. 115, No. 17, 172602 (2014). CrossRef K. Everschor-Sitte and M. Sitte, “Real-space Berry phases: Skyrmion soccer,” J. Appl. Phys. 115, No. 17, 172602 (2014). CrossRef
99.
go back to reference G. Chen, “Skyrmion Hall effect,” Nat. Phys. 13, No. 2, 112–113 (2017). CrossRef G. Chen, “Skyrmion Hall effect,” Nat. Phys. 13, No. 2, 112–113 (2017). CrossRef
100.
go back to reference K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G. S. D. Beach, and M. Kläui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13, No. 2, 170–175 (2017). CrossRef K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G. S. D. Beach, and M. Kläui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13, No. 2, 170–175 (2017). CrossRef
101.
go back to reference A. A. Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973). CrossRef A. A. Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973). CrossRef
102.
go back to reference W. Jiang, G. Chen, K. Liu, J. Zang, S. G. E. te Velthuis, and A. Hoffmann, “Skyrmions in magnetic multilayers,” Phys. Rep. 704, 1–49 (2017). CrossRef W. Jiang, G. Chen, K. Liu, J. Zang, S. G. E. te Velthuis, and A. Hoffmann, “Skyrmions in magnetic multilayers,” Phys. Rep. 704, 1–49 (2017). CrossRef
103.
go back to reference T. Dohi, S. DuttaGupta, S. Fukami, and H. Ohno, “Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles,” Nat. Commun. 10, No. 1, 5153 (2019). CrossRef T. Dohi, S. DuttaGupta, S. Fukami, and H. Ohno, “Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles,” Nat. Commun. 10, No. 1, 5153 (2019). CrossRef
104.
go back to reference S. Woo, K. M. Song, X. Zhang, Y. Zhou, M. Ezawa, X. Liu, S. Finizio, J. Raabe, N. J. Lee, S.-I. Kim, S.‑Y. Park, Y. Kim, J.-Y. Kim, D. Lee, O. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films,” Nat. Commun. 9, No. 1, 959 (2018). CrossRef S. Woo, K. M. Song, X. Zhang, Y. Zhou, M. Ezawa, X. Liu, S. Finizio, J. Raabe, N. J. Lee, S.-I. Kim, S.‑Y. Park, Y. Kim, J.-Y. Kim, D. Lee, O. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films,” Nat. Commun. 9, No. 1, 959 (2018). CrossRef
105.
go back to reference Y. Zhang, S. Luo, B. Yan, J. Ou-Yang, X. Yang, S. Chen, B. Zhu, and L. You, “Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy,” Nanoscale 9, No. 29, 10212–10218 (2017). CrossRef Y. Zhang, S. Luo, B. Yan, J. Ou-Yang, X. Yang, S. Chen, B. Zhu, and L. You, “Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy,” Nanoscale 9, No. 29, 10212–10218 (2017). CrossRef
106.
go back to reference J. Ding, X. Yang, and T. Zhu, “Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack,” J. Phys. D: Appl. Phys. 48, No. 11, 115004 (2015). CrossRef J. Ding, X. Yang, and T. Zhu, “Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack,” J. Phys. D: Appl. Phys. 48, No. 11, 115004 (2015). CrossRef
107.
go back to reference I. Gross, W. Akhtar, A. Hrabec, J. Sampaio, L. J. Martinez, S. Chouaieb, B. J. Shields, P. Maletinsky, A. Thiaville, S. Rohart, and V. Jacques, “Skyrmion morphology in ultrathin magnetic films,” Phys. Rev. Mater. 2, No. 2, 024406 (2018). CrossRef I. Gross, W. Akhtar, A. Hrabec, J. Sampaio, L. J. Martinez, S. Chouaieb, B. J. Shields, P. Maletinsky, A. Thiaville, S. Rohart, and V. Jacques, “Skyrmion morphology in ultrathin magnetic films,” Phys. Rev. Mater. 2, No. 2, 024406 (2018). CrossRef
108.
go back to reference K. Litzius, J. Leliaert, P. Bassirian, D. Rodrigues, S. Kromin, I. Lemesh, J. Zazvorka, K.-J. Lee, J. Mulkers, N. Kerber, D. Heinze, N. Keil, R. M. Reeve, M. Weigand, B. Van Waeyenberge, G. Schutz, K. Everschor-Sitte, G. S. D. Beach, and M. Kläui, “The role of temperature and drive current in skyrmion dynamics,” Nat. Electron. 3, No. 1, 30–36 (2018). CrossRef K. Litzius, J. Leliaert, P. Bassirian, D. Rodrigues, S. Kromin, I. Lemesh, J. Zazvorka, K.-J. Lee, J. Mulkers, N. Kerber, D. Heinze, N. Keil, R. M. Reeve, M. Weigand, B. Van Waeyenberge, G. Schutz, K. Everschor-Sitte, G. S. D. Beach, and M. Kläui, “The role of temperature and drive current in skyrmion dynamics,” Nat. Electron. 3, No. 1, 30–36 (2018). CrossRef
109.
go back to reference A. S. Samardak, A. V. Davydenko, A. G. Kolesnikov, A. Y. Samardak, A. G. Kozlov, B. Pal, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, A. V. Gerasimenko, I. H. Cha, Y. J. Kim, G. W. Kim, O. A. Tretiakov, and Y. K. Kim, “Enhancement of perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya interaction in thin ferromagnetic films by atomic-scale modulation of interfaces,” NPG Asia Mater. 12, No. 1, 51 (2020). CrossRef A. S. Samardak, A. V. Davydenko, A. G. Kolesnikov, A. Y. Samardak, A. G. Kozlov, B. Pal, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, A. V. Gerasimenko, I. H. Cha, Y. J. Kim, G. W. Kim, O. A. Tretiakov, and Y. K. Kim, “Enhancement of perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya interaction in thin ferromagnetic films by atomic-scale modulation of interfaces,” NPG Asia Mater. 12, No. 1, 51 (2020). CrossRef
110.
go back to reference A. V. Davydenko, A. G. Kozlov, M. E. Stebliy, A. G. Kolesnikov, N. I. Sarnavskiy, I. G. Iliushin, A. P. Golikov, “Dzyaloshinskii–Moriya interaction and chiral damping effect in symmetric epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 103, No. 9, 094435 (2021). CrossRef A. V. Davydenko, A. G. Kozlov, M. E. Stebliy, A. G. Kolesnikov, N. I. Sarnavskiy, I. G. Iliushin, A. P. Golikov, “Dzyaloshinskii–Moriya interaction and chiral damping effect in symmetric epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 103, No. 9, 094435 (2021). CrossRef
111.
go back to reference A. V. Davydenko, A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, G. S. Suslin, Y. E. Vekovshinin, A. V. Sadovnikov, and S. A. Nikitov, “Dzyaloshinskii-Moriya interaction in symmetric epitaxial [Co/Pd(111)] N superlattices with different numbers of Co/Pd bilayers,” Phys. Rev. B 99, No. 1, 014433 (2019). CrossRef A. V. Davydenko, A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, G. S. Suslin, Y. E. Vekovshinin, A. V. Sadovnikov, and S. A. Nikitov, “Dzyaloshinskii-Moriya interaction in symmetric epitaxial [Co/Pd(111)] N superlattices with different numbers of Co/Pd bilayers,” Phys. Rev. B 99, No. 1, 014433 (2019). CrossRef
112.
go back to reference S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7, No. 9, 713–718 (2011). CrossRef S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7, No. 9, 713–718 (2011). CrossRef
113.
go back to reference N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, “Writing and deleting single magnetic skyrmions,” Science 341, No. 6146, 636–639 (2013). CrossRef N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, “Writing and deleting single magnetic skyrmions,” Science 341, No. 6146, 636–639 (2013). CrossRef
114.
go back to reference T. H. Pham, J. Vogel, J. Sampaio, M. Vanatka, J. C. Rojas-Sanchez, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville, and S. Pizzini, “Very large domain wall velocities in Pt/Co/GdO x and Pt/Co/Gd trilayers with Dzya-loshinskii–Moriya interaction,” Europhys. Lett. 113, No. 6, 67001 (2016). CrossRef T. H. Pham, J. Vogel, J. Sampaio, M. Vanatka, J. C. Rojas-Sanchez, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville, and S. Pizzini, “Very large domain wall velocities in Pt/Co/GdO x and Pt/Co/Gd trilayers with Dzya-loshinskii–Moriya interaction,” Europhys. Lett. 113, No. 6, 67001 (2016). CrossRef
115.
go back to reference Y. Yoshimura, K. J. Kim, T. Taniguchi, T. Tono, K. Ueda, R. Hiramatsu, T. Moriyama, K. Yamada, Y. Nakatani, and T. Ono, “Soliton-like magnetic domain wall motion induced by the interfacial Dzya-loshinskii–Moriya interaction,” Nat. Phys. 12, No. 2, 157–161 (2016). CrossRef Y. Yoshimura, K. J. Kim, T. Taniguchi, T. Tono, K. Ueda, R. Hiramatsu, T. Moriyama, K. Yamada, Y. Nakatani, and T. Ono, “Soliton-like magnetic domain wall motion induced by the interfacial Dzya-loshinskii–Moriya interaction,” Nat. Phys. 12, No. 2, 157–161 (2016). CrossRef
116.
go back to reference H. X. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, “Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces,” Phys. Rev. Lett. 115, 267210 (2015). H. X. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, “Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces,” Phys. Rev. Lett. 115, 267210 (2015).
117.
go back to reference O. Boulle, J. Vogel, H. Yang, S. Pizzini, Chaves D. de Souza, A. Locatelli, T. O. Mentes, A. Sala, L. D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S. M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. M. Miron, and G. Gaudin, “Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures,” Nat. Nanotechnol. 11, No. 5, 449–454 (2016). CrossRef O. Boulle, J. Vogel, H. Yang, S. Pizzini, Chaves D. de Souza, A. Locatelli, T. O. Mentes, A. Sala, L. D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S. M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. M. Miron, and G. Gaudin, “Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures,” Nat. Nanotechnol. 11, No. 5, 449–454 (2016). CrossRef
118.
go back to reference K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, 044079 (2020). K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, 044079 (2020).
119.
go back to reference A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, A. P. Golikov, and A. V. Davydenko, “Domain-period method for determination of the energy of the Dzyaloshinskii–Moriya interaction in [Co/Pd(111)] 5 superlattices,” Phys. Rev. B 102, No. 14, 144411 (2020). CrossRef A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, A. P. Golikov, and A. V. Davydenko, “Domain-period method for determination of the energy of the Dzyaloshinskii–Moriya interaction in [Co/Pd(111)] 5 superlattices,” Phys. Rev. B 102, No. 14, 144411 (2020). CrossRef
120.
go back to reference O. Hellwig, A. Berger, J. B. Kortright, and E. E. Fullerton, “Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films,” J. Magn. Magn. Mater. 319, Nos. 1–2, 13‒55 (2007). CrossRef O. Hellwig, A. Berger, J. B. Kortright, and E. E. Fullerton, “Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films,” J. Magn. Magn. Mater. 319, Nos. 1–2, 13‒55 (2007). CrossRef
121.
go back to reference C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, “Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature (vol. 11, pg 444, 2016),” Nat. Nanotechnol. 11, No. 8, 731 (2016). CrossRef C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, “Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature (vol. 11, pg 444, 2016),” Nat. Nanotechnol. 11, No. 8, 731 (2016). CrossRef
122.
go back to reference A. Soumyanarayanan, M. Raju, A. L. G. Oyarce, A. K. C. Tan, M. Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo, M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, “Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers,” Nat. Mater. 16, No. 9, 898–904 (2017). CrossRef A. Soumyanarayanan, M. Raju, A. L. G. Oyarce, A. K. C. Tan, M. Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo, M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, “Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers,” Nat. Mater. 16, No. 9, 898–904 (2017). CrossRef
123.
go back to reference D. A. Dugato, J. Brandao, R. L. Seeger, F. Beron, J. C. Cezar, L. S. Dorneles, and T. J. A. Mori, “Magnetic domain size tuning in asymmetric Pd/Co/W/Pd multilayers with perpendicular magnetic anisotropy,” Appl. Phys. Lett. 115, 182408 (2019). D. A. Dugato, J. Brandao, R. L. Seeger, F. Beron, J. C. Cezar, L. S. Dorneles, and T. J. A. Mori, “Magnetic domain size tuning in asymmetric Pd/Co/W/Pd multilayers with perpendicular magnetic anisotropy,” Appl. Phys. Lett. 115, 182408 (2019).
124.
go back to reference S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M. Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, “Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices,” Phys. Rev. B 95, 024415 (2017). S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M. Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, “Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices,” Phys. Rev. B 95, 024415 (2017).
125.
go back to reference W. Legrand, J. Y. Chauleau, D. Maccariello, N. Reyren, S. Collin, K. Bouzehouane, N. Jaouen, V. Cros, and A. Fert, “Hybrid chiral domain walls and skyrmions in magnetic multilayers,” Sci. Adv. 4, No. 7, eaat041 (2018). W. Legrand, J. Y. Chauleau, D. Maccariello, N. Reyren, S. Collin, K. Bouzehouane, N. Jaouen, V. Cros, and A. Fert, “Hybrid chiral domain walls and skyrmions in magnetic multilayers,” Sci. Adv. 4, No. 7, eaat041 (2018).
126.
go back to reference I. Lemesh and G. S. D. Beach, “Twisted domain walls and skyrmions in perpendicularly magnetized multilayers,” Phys. Rev. B 98, 104402 (2018). I. Lemesh and G. S. D. Beach, “Twisted domain walls and skyrmions in perpendicularly magnetized multilayers,” Phys. Rev. B 98, 104402 (2018).
127.
go back to reference R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillon, and S. S. P. Parkin, “Magnetic racetrack memory: From physics to the cusp of applications within a decade,” Proc. IEEE. 108, No. 8, 1303–1321 (2020). CrossRef R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillon, and S. S. P. Parkin, “Magnetic racetrack memory: From physics to the cusp of applications within a decade,” Proc. IEEE. 108, No. 8, 1303–1321 (2020). CrossRef
128.
go back to reference G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri, and K. L. Wang, “Room-temperature skyrmion shift device for memory application,” Nano Lett. 17, No. 1, 261–268 (2017). CrossRef G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri, and K. L. Wang, “Room-temperature skyrmion shift device for memory application,” Nano Lett. 17, No. 1, 261–268 (2017). CrossRef
129.
go back to reference S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable Skyrmion Logic Gates, Nano Lett. 18, No. 2, 1180–1184 (2018). CrossRef S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable Skyrmion Logic Gates, Nano Lett. 18, No. 2, 1180–1184 (2018). CrossRef
130.
go back to reference F. Büttner, I. Lemesh, M. Schneider, B. Pfau, C. M. Günther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Krüger, J. Viefhaus, S. Eisebitt, and G. S. D. Beach, “Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques,” Nat. Nanotechnol. 12, No. 11, 1040–1044 (2017). CrossRef F. Büttner, I. Lemesh, M. Schneider, B. Pfau, C. M. Günther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Krüger, J. Viefhaus, S. Eisebitt, and G. S. D. Beach, “Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques,” Nat. Nanotechnol. 12, No. 11, 1040–1044 (2017). CrossRef
131.
go back to reference C. Ma, X. Zhang, J. Xia, M. Ezawa, W. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. Liu, “Electric field-induced creation and directional motion of domain walls and skyrmion bubbles,” Nano Lett. 19, No. 1, 353–361 (2019). CrossRef C. Ma, X. Zhang, J. Xia, M. Ezawa, W. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. Liu, “Electric field-induced creation and directional motion of domain walls and skyrmion bubbles,” Nano Lett. 19, No. 1, 353–361 (2019). CrossRef
132.
go back to reference T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S. -M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, “Large-voltage tuning of Dzyaloshinskii–Moriya interactions: A route toward dynamic control of skyrmion chirality,” Nano Lett. 18, No. 8, 4871–4877 (2018). CrossRef T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S. -M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, “Large-voltage tuning of Dzyaloshinskii–Moriya interactions: A route toward dynamic control of skyrmion chirality,” Nano Lett. 18, No. 8, 4871–4877 (2018). CrossRef
133.
go back to reference S. Zhang, J. Zhang, Q. Zhang, C. Barton, V. Neu, Y. Zhao, Z. Hou, Y. Wen, C. Gong, O. Kazakova, W. Wang, Y. Peng, D. A. Garanin, E. M. Chudnovsky, and X. Zhang, “Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field,” Appl. Phys. Lett. 112, No. 13, 132405 (2018). CrossRef S. Zhang, J. Zhang, Q. Zhang, C. Barton, V. Neu, Y. Zhao, Z. Hou, Y. Wen, C. Gong, O. Kazakova, W. Wang, Y. Peng, D. A. Garanin, E. M. Chudnovsky, and X. Zhang, “Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field,” Appl. Phys. Lett. 112, No. 13, 132405 (2018). CrossRef
134.
go back to reference A. V. Ognev, A. G. Kolesnikov, Y. J. Kim, I. H. Cha, A. V. Sadovnikov, S. A. Nikitov, I. V. Soldatov, A. Talapatra, J. Mohanty, M. Mruczkiewicz, Y. Ge, N. Kerber, F. Dittrich, P. Virnau, M. Klaui, Y. K. Kim, and A. S. Samardak, “Magnetic direct-write skyrmion nanolithography,” ACS Nano. 14, No. 11, 14960–14970 (2020). CrossRef A. V. Ognev, A. G. Kolesnikov, Y. J. Kim, I. H. Cha, A. V. Sadovnikov, S. A. Nikitov, I. V. Soldatov, A. Talapatra, J. Mohanty, M. Mruczkiewicz, Y. Ge, N. Kerber, F. Dittrich, P. Virnau, M. Klaui, Y. K. Kim, and A. S. Samardak, “Magnetic direct-write skyrmion nanolithography,” ACS Nano. 14, No. 11, 14960–14970 (2020). CrossRef
135.
go back to reference Z. Wang, M. Guo, H.-A. Zhou, L. Zhao, T. Xu, R. Tomasello, H. Bai, Y. Dong, S.-G. Je, W. Chao, H.-S. Han, S. Lee, K.-S. Lee, Y. Yao, W. Han, C. Song, H. Wu, M. Carpentieri, G. Finocchio, M.‑Y. Im, S.-Z. Lin, and W. Jiang, “Thermal generation, manipulation and thermoelectric detection of skyrmions,” Nat. Electron. 3, No. 11, 672–679 (2020). CrossRef Z. Wang, M. Guo, H.-A. Zhou, L. Zhao, T. Xu, R. Tomasello, H. Bai, Y. Dong, S.-G. Je, W. Chao, H.-S. Han, S. Lee, K.-S. Lee, Y. Yao, W. Han, C. Song, H. Wu, M. Carpentieri, G. Finocchio, M.‑Y. Im, S.-Z. Lin, and W. Jiang, “Thermal generation, manipulation and thermoelectric detection of skyrmions,” Nat. Electron. 3, No. 11, 672–679 (2020). CrossRef
136.
go back to reference W. Koshibae and N. Nagaosa, “Creation of skyrmions and antiskyrmions by local heating,” Nat. Commun. 5, No. 1, 5148 (2014). CrossRef W. Koshibae and N. Nagaosa, “Creation of skyrmions and antiskyrmions by local heating,” Nat. Commun. 5, No. 1, 5148 (2014). CrossRef
137.
go back to reference S. Woo, K. M. Song, X. Zhang, M. Ezawa, Y. Zhou, X. Liu, M. Weigand, S. Finizio, J. Raabe, M.-C. Park, K.-Y. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy,” Nat. Electron. 1, No. 5, 288–296 (2018). CrossRef S. Woo, K. M. Song, X. Zhang, M. Ezawa, Y. Zhou, X. Liu, M. Weigand, S. Finizio, J. Raabe, M.-C. Park, K.-Y. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy,” Nat. Electron. 1, No. 5, 288–296 (2018). CrossRef
138.
go back to reference R. Juge, S.-G. Je, ChavesD. de Souza, S. Pizzini, L. D. Buda-Prejbeanu, L. Aballe, M. Foerster, A. Locatelli, T. O. Mentes, A. Sala, F. Maccherozzi, S. S. Dhesi, S. Auffret, E. Gautier, G. Gaudin, J. Vogel, and O. Boulle, “Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder,” J. Magn. Magn. Mater. 455, 3–8 (2018). CrossRef R. Juge, S.-G. Je, ChavesD. de Souza, S. Pizzini, L. D. Buda-Prejbeanu, L. Aballe, M. Foerster, A. Locatelli, T. O. Mentes, A. Sala, F. Maccherozzi, S. S. Dhesi, S. Auffret, E. Gautier, G. Gaudin, J. Vogel, and O. Boulle, “Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder,” J. Magn. Magn. Mater. 455, 3–8 (2018). CrossRef
139.
go back to reference D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, “Realization of ground-state artificial skyrmion lattices at room temperature,” Nat. Commun. 6, No. 1, 8462 (2015). CrossRef D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, “Realization of ground-state artificial skyrmion lattices at room temperature,” Nat. Commun. 6, No. 1, 8462 (2015). CrossRef
140.
go back to reference S. Finizio, K. Zeissler, S. Wintz, S. Mayr, T. Wessels, A. J. Huxtable, G. Burnell, C. H. Marrows, and J. Raabe, “Deterministic field-free skyrmion nucleation at a nanoengineered injector device,” Nano Lett. 19, No. 10, 7246–7255 (2019). CrossRef S. Finizio, K. Zeissler, S. Wintz, S. Mayr, T. Wessels, A. J. Huxtable, G. Burnell, C. H. Marrows, and J. Raabe, “Deterministic field-free skyrmion nucleation at a nanoengineered injector device,” Nano Lett. 19, No. 10, 7246–7255 (2019). CrossRef
141.
go back to reference K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, “Ultrafast magnetization switching by spin-orbit torques,” Appl. Phys Lett. 105, No. 21, 212402 (2014). CrossRef K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, “Ultrafast magnetization switching by spin-orbit torques,” Appl. Phys Lett. 105, No. 21, 212402 (2014). CrossRef
142.
go back to reference B. Jinnai, H. Sato, S. Fukami, and H. Ohno, “Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires,” Appl. Phys. Lett. 113, No. 21, 212403 (2018). CrossRef B. Jinnai, H. Sato, S. Fukami, and H. Ohno, “Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires,” Appl. Phys. Lett. 113, No. 21, 212403 (2018). CrossRef
143.
go back to reference A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, O. V. Vikhrova, M. V. Dorokhin, P. B. Demina, and A. V. Kudrin, “Formation of a domain structure in multilayer CoPt films by magnetic probe of an atomic force microscope,” Phys. Solid State 60, No. 11, 2200–2206 (2018). CrossRef A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, O. V. Vikhrova, M. V. Dorokhin, P. B. Demina, and A. V. Kudrin, “Formation of a domain structure in multilayer CoPt films by magnetic probe of an atomic force microscope,” Phys. Solid State 60, No. 11, 2200–2206 (2018). CrossRef
144.
go back to reference D. A. Garanin, D. Capic, S. Zhang, X. Zhang, and E. M. Chudnovsky, “Writing skyrmions with a magnetic dipole,” J. Appl. Phys. 124, 113901 (2018). D. A. Garanin, D. Capic, S. Zhang, X. Zhang, and E. M. Chudnovsky, “Writing skyrmions with a magnetic dipole,” J. Appl. Phys. 124, 113901 (2018).
145.
go back to reference F. Ma, Y. Zhou, H. B. Braun, and W. S. Lew, “Skyrmion-based dynamic magnonic crystal,” Nano Lett. 15, No. 6, 4029–4036 (2015). CrossRef F. Ma, Y. Zhou, H. B. Braun, and W. S. Lew, “Skyrmion-based dynamic magnonic crystal,” Nano Lett. 15, No. 6, 4029–4036 (2015). CrossRef
146.
go back to reference C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, No. 4, 047601 (2007). CrossRef C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, No. 4, 047601 (2007). CrossRef
147.
go back to reference C. H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, No. 6202, 1337 (2014). CrossRef C. H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, No. 6202, 1337 (2014). CrossRef
148.
go back to reference F. Dalla Longa, J. T. Kohlhepp, W. J. M. de Jonge, and B. Koopmans, “Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers,” Phys. Rev. B 81, 094435 (2010). F. Dalla Longa, J. T. Kohlhepp, W. J. M. de Jonge, and B. Koopmans, “Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers,” Phys. Rev. B 81, 094435 (2010).
149.
go back to reference M. S. El Hadri, P. Pirro, C. H. Lambert, S. Petit-Watelot, Y. Quessab, M. Hehn, F. Montaigne, G. Malinowski, and S. Mangin, “Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses,” Phys. Rev. B 94, No. 6, 064412 (2016). CrossRef M. S. El Hadri, P. Pirro, C. H. Lambert, S. Petit-Watelot, Y. Quessab, M. Hehn, F. Montaigne, G. Malinowski, and S. Mangin, “Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses,” Phys. Rev. B 94, No. 6, 064412 (2016). CrossRef
150.
go back to reference M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, T. Rasing, and M. Ezawa, “Laser-induced magnetic nanostructures with tunable topological properties,” Phys. Rev. Lett. 110, No. 17, 177205 (2013). CrossRef M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, T. Rasing, and M. Ezawa, “Laser-induced magnetic nanostructures with tunable topological properties,” Phys. Rev. Lett. 110, No. 17, 177205 (2013). CrossRef
151.
go back to reference S. G. Je, P. Vallobra, T. Srivastava, J. C. Rojas-Sanchez, T. H. Pham, M. Hehn, G. Malinowski, C. Baraduc, S. Auffret, G. Gaudin, S. Mangin, H. Bea, and O. Boulle, “Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films,” Nano Lett. 18, No. 11, 7362–7371 (2018). CrossRef S. G. Je, P. Vallobra, T. Srivastava, J. C. Rojas-Sanchez, T. H. Pham, M. Hehn, G. Malinowski, C. Baraduc, S. Auffret, G. Gaudin, S. Mangin, H. Bea, and O. Boulle, “Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films,” Nano Lett. 18, No. 11, 7362–7371 (2018). CrossRef
152.
go back to reference Y. Liu, N. Lei, C. Wang, X. Zhang, W. Kang, D. Zhu, Y. Zhou, X. Liu, Y. Zhang, and W. Zhao, “Voltage-driven high-speed skyrmion motion in a skyrmion-shift device,” Phys. Rev. Appl. 11, No. 1, 014004 (2019). CrossRef Y. Liu, N. Lei, C. Wang, X. Zhang, W. Kang, D. Zhu, Y. Zhou, X. Liu, Y. Zhang, and W. Zhao, “Voltage-driven high-speed skyrmion motion in a skyrmion-shift device,” Phys. Rev. Appl. 11, No. 1, 014004 (2019). CrossRef
153.
go back to reference R. Chen, Y. Li, V. F. Pavlidis, and C. Moutafis, “Skyrmionic interconnect device,” Phys. Rev. Res. 2, No. 4, 043312 (2020). CrossRef R. Chen, Y. Li, V. F. Pavlidis, and C. Moutafis, “Skyrmionic interconnect device,” Phys. Rev. Res. 2, No. 4, 043312 (2020). CrossRef
154.
go back to reference S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, “Magnetic skyrmion-based artificial neuron device,” Nanotechnology 28, No. 31, 31LT01 (2017). CrossRef S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, “Magnetic skyrmion-based artificial neuron device,” Nanotechnology 28, No. 31, 31LT01 (2017). CrossRef
155.
go back to reference X. Chen, W. Kang, D. Zhu, X. Zhang, N. Lei, Y. Zhang, Y. Zhou, and W. Zhao, “A compact skyrmionic leaky–integrate–fire spiking neuron device,” Nanoscale 10, No. 13, 6139–6146 (2018). CrossRef X. Chen, W. Kang, D. Zhu, X. Zhang, N. Lei, Y. Zhang, Y. Zhou, and W. Zhao, “A compact skyrmionic leaky–integrate–fire spiking neuron device,” Nanoscale 10, No. 13, 6139–6146 (2018). CrossRef
156.
go back to reference J. Zhou and J. Chen, “Prospect of spintronics in neuromorphic computing,” Adv. Electron. Mater. 7, 2100465 (2021). CrossRef J. Zhou and J. Chen, “Prospect of spintronics in neuromorphic computing,” Adv. Electron. Mater. 7, 2100465 (2021). CrossRef
157.
go back to reference W. L. Yang, C. H. Wan, Z. R. Yan, X. Zhang, M. E. Stebliy, X. Wang, C. Fang, C. Y. Guo, Y. W. Xing, T. Y. Ma, A. V. Ognev, A. S. Samardak, M.-J. Tung, G. Q. Yu, and X. F. Han, “Chirality-Reversible multistate switching via two orthogonal spin-orbit torques in a perpendicularly magnetized system,” Phys. Rev. Appl. 13, No. 2, 024052 (2020). CrossRef W. L. Yang, C. H. Wan, Z. R. Yan, X. Zhang, M. E. Stebliy, X. Wang, C. Fang, C. Y. Guo, Y. W. Xing, T. Y. Ma, A. V. Ognev, A. S. Samardak, M.-J. Tung, G. Q. Yu, and X. F. Han, “Chirality-Reversible multistate switching via two orthogonal spin-orbit torques in a perpendicularly magnetized system,” Phys. Rev. Appl. 13, No. 2, 024052 (2020). CrossRef
158.
go back to reference G. Bourianoff, D. Pinna, M. Sitte, and K. Everschor-Sitte, “Potential implementation of reservoir computing models based on magnetic skyrmions,” AIP Adv. 8, No. 5, 055602 (2018). CrossRef G. Bourianoff, D. Pinna, M. Sitte, and K. Everschor-Sitte, “Potential implementation of reservoir computing models based on magnetic skyrmions,” AIP Adv. 8, No. 5, 055602 (2018). CrossRef
159.
go back to reference D. Pinna, G. Bourianoff, and K. Everschor-Sitte, “Reservoir computing with random skyrmion textures,” Phys. Rev. Appl. 14, No. 5, 054020 (2020). CrossRef D. Pinna, G. Bourianoff, and K. Everschor-Sitte, “Reservoir computing with random skyrmion textures,” Phys. Rev. Appl. 14, No. 5, 054020 (2020). CrossRef
160.
go back to reference K.-J. Kim, S. K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.‑J. Lee, and T. Ono, “Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets,” Nat. Mater. 16, No. 12, 1187–1192 (2017). CrossRef K.-J. Kim, S. K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.‑J. Lee, and T. Ono, “Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets,” Nat. Mater. 16, No. 12, 1187–1192 (2017). CrossRef
161.
go back to reference W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin Jungfleisch, E. Pearson John, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and G. E. te Velthuis Suzanne, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13, No. 2, 162–169 (2017). CrossRef W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin Jungfleisch, E. Pearson John, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and G. E. te Velthuis Suzanne, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13, No. 2, 162–169 (2017). CrossRef
162.
go back to reference Y. Hirata, D.-H. Kim, S. K. Kim, D.-K. Lee, S.‑H. Oh, D.-Y. Kim, T. Nishimura, T. Okuno, Y. Futakawa, H. Yoshikawa, A. Tsukamoto, Y. Tserkovnyak, Y. Shiota, T. Moriyama, S.-B. Choe, K.-J. Lee, and T. Ono, “Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet,” Nat. Nanotechnol. 14, No. 3, 232–236 (2019). CrossRef Y. Hirata, D.-H. Kim, S. K. Kim, D.-K. Lee, S.‑H. Oh, D.-Y. Kim, T. Nishimura, T. Okuno, Y. Futakawa, H. Yoshikawa, A. Tsukamoto, Y. Tserkovnyak, Y. Shiota, T. Moriyama, S.-B. Choe, K.-J. Lee, and T. Ono, “Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet,” Nat. Nanotechnol. 14, No. 3, 232–236 (2019). CrossRef
163.
go back to reference B. Ding, Z. Li, G. Xu, H. Li, Z. Hou, E. Liu, X. Xi, F. Xu, Y. Yao, and W. Wang, “Observation of magnetic skyrmion bubbles in a van der waals ferromagnet Fe 3GeTe 2,” Nano Lett. 20, No. 2, 868–873 (2020). CrossRef B. Ding, Z. Li, G. Xu, H. Li, Z. Hou, E. Liu, X. Xi, F. Xu, Y. Yao, and W. Wang, “Observation of magnetic skyrmion bubbles in a van der waals ferromagnet Fe 3GeTe 2,” Nano Lett. 20, No. 2, 868–873 (2020). CrossRef
164.
go back to reference J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and S. O. Valenzuela, “Van der Waals heterostructures for spintronics and opto-spintronics,” Nat. Nanotechnol. 16, No. 8, 856–868 (2021). CrossRef J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and S. O. Valenzuela, “Van der Waals heterostructures for spintronics and opto-spintronics,” Nat. Nanotechnol. 16, No. 8, 856–868 (2021). CrossRef
165.
go back to reference Y. Wu, S. Zhang, J. Zhang, W. Wang, Y. L. Zhu, J. Hu, G. Yin, K. Wong, C. Fang, C. Wan, X. Han, Q. Shao, T. Taniguchi, K. Watanabe, J. Zang, Z. Mao, X. Zhang, and K. L. Wang, “Néel-type skyrmion in WTe 2/Fe 3GeTe 2 van der Waals heterostructure,” Nat. Commun. 11, No. 1, 3860 (2020). Y. Wu, S. Zhang, J. Zhang, W. Wang, Y. L. Zhu, J. Hu, G. Yin, K. Wong, C. Fang, C. Wan, X. Han, Q. Shao, T. Taniguchi, K. Watanabe, J. Zang, Z. Mao, X. Zhang, and K. L. Wang, “Néel-type skyrmion in WTe 2/Fe 3GeTe 2 van der Waals heterostructure,” Nat. Commun. 11, No. 1, 3860 (2020).
166.
go back to reference T. -E. Park, L. Peng, J. Liang, A. Hallal, F. S. Yasin, X. Zhang, K. M. Song, S. J. Kim, K. Kim, M. Weigand, G. Schutz, S. Finizio, J. Raabe, K. Garcia, J. Xia, Y. Zhou, M. Ezawa, X. Liu, J. Chang, H. C. Koo, Y. D. Kim, M. Chshiev, A. Fert, H. Yang, X. Yu, and S. Woo, “Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures,” Phys. Rev. B 103, No. 10, 104410 (2021). CrossRef T. -E. Park, L. Peng, J. Liang, A. Hallal, F. S. Yasin, X. Zhang, K. M. Song, S. J. Kim, K. Kim, M. Weigand, G. Schutz, S. Finizio, J. Raabe, K. Garcia, J. Xia, Y. Zhou, M. Ezawa, X. Liu, J. Chang, H. C. Koo, Y. D. Kim, M. Chshiev, A. Fert, H. Yang, X. Yu, and S. Woo, “Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures,” Phys. Rev. B 103, No. 10, 104410 (2021). CrossRef
167.
go back to reference L. Peng, F. S. Yasin, T.-E. Park, S. J. Kim, X. Zhang, T. Nagai, K. Kimoto, S. Woo, and X. Yu, “Tunable Néel–Bloch magnetic twists in Fe 3GeTe 2 with van der Waals structure,” Adv. Funct. Mater. 31, 2103583 (2021). L. Peng, F. S. Yasin, T.-E. Park, S. J. Kim, X. Zhang, T. Nagai, K. Kimoto, S. Woo, and X. Yu, “Tunable Néel–Bloch magnetic twists in Fe 3GeTe 2 with van der Waals structure,” Adv. Funct. Mater. 31, 2103583 (2021).
Metadata
Title
Topologically Nontrivial Spin Textures in Thin Magnetic Films
Authors
A. S. Samardak
A. G. Kolesnikov
A. V. Davydenko
M. E. Steblii
A. V. Ognev
Publication date
01-03-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030097