Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2019

11-01-2019 | Research Paper

Topology optimization of conductors in electrical circuit

Authors: Katsuya Nomura, Shintaro Yamasaki, Kentaro Yaji, Hiroki Bo, Atsuhiro Takahashi, Takashi Kojima, Kikuo Fujita

Published in: Structural and Multidisciplinary Optimization | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a topology optimization method for realizing a free-form design of conductors in electrical circuits. Conductors in a circuit must connect components, such as voltage sources, resistors, capacitors, and inductors, according to the given circuit diagram. The shape of conductors has a strong effect on the high-frequency performance of a circuit due to parasitic circuit elements such as parasitic inductance and capacitance. In this study, we apply topology optimization to the design of such conductors to minimize parasitic effects with maximum flexibility of shape manipulation. However, when the distribution of conductors is repeatedly updated in topology optimization, disconnections and connections of conductors that cause open and short circuits, respectively, may occur. To prevent this, a method that uses fictitious electric current and electric field calculations is proposed. Disallowed disconnections are prevented by limiting the maximum value of the fictitious current density in conductors where a current is induced. This concept is based on the fact that an electric current becomes concentrated in a thin conductor before disconnection occurs. Disallowed connections are prevented by limiting the maximum value of the fictitious electric field strength around conductors where a voltage is applied. This is based on the fact that the electric field in a parallel plate capacitor is inversely proportional to the distance between the plates. These limitations are aggregated as a single constraint using the Kreisselmeier-Steinhauser function in the formulation of optimization problems. This constraint prevents only disallowed disconnections and connections, but does not prevent allowed topology changes. The effectiveness of the constraint is confirmed using simple examples, and an actual design problem involving conductors in electromagnetic interference filters is used to verify that the proposed constraint can be utilized for conductor optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aage N, Egede Johansen V (2017) Topology optimization of microwave waveguide filters. Int J Numer Methods Eng 112(3):283–300MathSciNetCrossRef Aage N, Egede Johansen V (2017) Topology optimization of microwave waveguide filters. Int J Numer Methods Eng 112(3):283–300MathSciNetCrossRef
go back to reference Aage N, Mortensen N, Sigmund O (2010) Topology optimization of metallic devices for microwave applications. Int J Numer Methods Eng 83(2):228–248MathSciNetMATH Aage N, Mortensen N, Sigmund O (2010) Topology optimization of metallic devices for microwave applications. Int J Numer Methods Eng 83(2):228–248MathSciNetMATH
go back to reference Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Mathematique 349(17-18):999–1003MathSciNetCrossRefMATH Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Mathematique 349(17-18):999–1003MathSciNetCrossRefMATH
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH
go back to reference Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, BerlinCrossRefMATH Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, BerlinCrossRefMATH
go back to reference Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40(9):951–962CrossRef Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40(9):951–962CrossRef
go back to reference Choi JS, Izui K, Nishiwaki S, Kawamoto A, Nomura T (2012) Rotor pole design of ipm motors for a sinusoidal air-gap flux density distribution. Struct Multidiscip Optim 46(3):445–455CrossRef Choi JS, Izui K, Nishiwaki S, Kawamoto A, Nomura T (2012) Rotor pole design of ipm motors for a sinusoidal air-gap flux density distribution. Struct Multidiscip Optim 46(3):445–455CrossRef
go back to reference Christiansen AN, Nobel-jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399MathSciNetCrossRef Christiansen AN, Nobel-jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399MathSciNetCrossRef
go back to reference Erentok A, Sigmund O (2008) Three-dimensional topology optimized electrically-small conformal antenna. In: 2008 IEEE antennas and propagation society international symposium. IEEE Erentok A, Sigmund O (2008) Three-dimensional topology optimized electrically-small conformal antenna. In: 2008 IEEE antennas and propagation society international symposium. IEEE
go back to reference Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69CrossRef Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69CrossRef
go back to reference Frickey DA (1994) Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances. IEEE Trans Microwave Theory Tech 42(2):205–211CrossRef Frickey DA (1994) Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances. IEEE Trans Microwave Theory Tech 42(2):205–211CrossRef
go back to reference Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetCrossRefMATH Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetCrossRefMATH
go back to reference Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13-14):1447–1455CrossRef Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13-14):1447–1455CrossRef
go back to reference Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization 11(1–2):1–12CrossRef Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization 11(1–2):1–12CrossRef
go back to reference Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768CrossRef Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768CrossRef
go back to reference Hayt WH, Kemmerly JE, Durbin SM (1986) Engineering circuit analysis. McGraw-Hill, New York Hayt WH, Kemmerly JE, Durbin SM (1986) Engineering circuit analysis. McGraw-Hill, New York
go back to reference Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024CrossRef Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024CrossRef
go back to reference Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24CrossRefMATH Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24CrossRefMATH
go back to reference Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proceedings Volumes 12(7):113–117CrossRefMATH Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proceedings Volumes 12(7):113–117CrossRefMATH
go back to reference Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MathSciNetCrossRefMATH Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MathSciNetCrossRefMATH
go back to reference Kurokawa K (1965) Power waves and the scattering matrix. IEEE Trans Microwave Theory Tech 13(2):194–202CrossRef Kurokawa K (1965) Power waves and the scattering matrix. IEEE Trans Microwave Theory Tech 13(2):194–202CrossRef
go back to reference Liu S, Wang Q, Gao R (2014) A topology optimization method for design of small GPR antennas. Struct Multidiscip Optim 50(6):1165–1174CrossRef Liu S, Wang Q, Gao R (2014) A topology optimization method for design of small GPR antennas. Struct Multidiscip Optim 50(6):1165–1174CrossRef
go back to reference Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331CrossRefMATH Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331CrossRefMATH
go back to reference McRae DS (2000) r-refinement grid adaptation algorithms and issues. Comput Methods Appl Mech Eng 189 (4):1161–1182CrossRefMATH McRae DS (2000) r-refinement grid adaptation algorithms and issues. Comput Methods Appl Mech Eng 189 (4):1161–1182CrossRefMATH
go back to reference Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296CrossRefMATH Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296CrossRefMATH
go back to reference Paul CR (2006) Introduction to electromagnetic compatibility. Wiley, New York Paul CR (2006) Introduction to electromagnetic compatibility. Wiley, New York
go back to reference Sato Y, Yamada T, Izui K, Nishiwaki S (2017) Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization. Int J Adv Manuf Technol 92(1–4):1391–1409CrossRef Sato Y, Yamada T, Izui K, Nishiwaki S (2017) Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization. Int J Adv Manuf Technol 92(1–4):1391–1409CrossRef
go back to reference Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE Photon Technol Lett 18(7):850–852CrossRef Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE Photon Technol Lett 18(7):850–852CrossRef
go back to reference Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using X-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438CrossRef Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using X-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438CrossRef
go back to reference Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH
go back to reference Wang S, Wang MY (2006) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922MathSciNetCrossRefMATH Wang S, Wang MY (2006) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922MathSciNetCrossRefMATH
go back to reference Wang S, Lee FC, Chen DY, Odendaal WG (2004) Effects of parasitic parameters on EMI filter performance. IEEE Trans on Power Electron 19(3):869–877CrossRef Wang S, Lee FC, Chen DY, Odendaal WG (2004) Effects of parasitic parameters on EMI filter performance. IEEE Trans on Power Electron 19(3):869–877CrossRef
go back to reference Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef
go back to reference Wrenn GA (1989) An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function. NASA Contractor Report (4220) Wrenn GA (1989) An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function. NASA Contractor Report (4220)
go back to reference Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64CrossRef Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64CrossRef
go back to reference Yamada T, Watanabe H, Fujii G, Matsumoto T (2013) Topology optimization for a dielectric optical cloak based on an exact level set approach. IEEE Trans Magn 49(5):2073–2076CrossRef Yamada T, Watanabe H, Fujii G, Matsumoto T (2013) Topology optimization for a dielectric optical cloak based on an exact level set approach. IEEE Trans Magn 49(5):2073–2076CrossRef
go back to reference Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868MathSciNetCrossRefMATH Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868MathSciNetCrossRefMATH
go back to reference Yamasaki S, Yamada T, Matsumoto T (2013) An immersed boundary element method for level-set based topology optimization. Int J Numer Methods Eng 93(9):960–988MathSciNetCrossRefMATH Yamasaki S, Yamada T, Matsumoto T (2013) An immersed boundary element method for level-set based topology optimization. Int J Numer Methods Eng 93(9):960–988MathSciNetCrossRefMATH
go back to reference Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101(10):744–773MathSciNetCrossRefMATH Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101(10):744–773MathSciNetCrossRefMATH
go back to reference Yamasaki S, Kawamoto A, Saito A, Kuroishi M, Fujita K (2017a) Grayscale-free topology optimization for electromagnetic design problem of in-vehicle reactor. Struct Multidiscip Optim 55(3):1079–1090MathSciNetCrossRef Yamasaki S, Kawamoto A, Saito A, Kuroishi M, Fujita K (2017a) Grayscale-free topology optimization for electromagnetic design problem of in-vehicle reactor. Struct Multidiscip Optim 55(3):1079–1090MathSciNetCrossRef
go back to reference Yamasaki S, Yamanaka S, Fujita K (2017b) Three-dimensional grayscale-free topology optimization using a level-set based r-refinement method. Int J Numer Methods Eng 112(10):1402–1438MathSciNetCrossRef Yamasaki S, Yamanaka S, Fujita K (2017b) Three-dimensional grayscale-free topology optimization using a level-set based r-refinement method. Int J Numer Methods Eng 112(10):1402–1438MathSciNetCrossRef
go back to reference Yoo J, Kikuchi N, Volakis JL (2000) Structural optimization in magnetic devices by the homogenization design method. IEEE Trans Magn 36(3):574–580CrossRef Yoo J, Kikuchi N, Volakis JL (2000) Structural optimization in magnetic devices by the homogenization design method. IEEE Trans Magn 36(3):574–580CrossRef
go back to reference Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86MathSciNetCrossRefMATH Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86MathSciNetCrossRefMATH
go back to reference Zhou S, Li W, Li Q (2010) Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys 229(19):6915–6930MathSciNetCrossRefMATH Zhou S, Li W, Li Q (2010) Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys 229(19):6915–6930MathSciNetCrossRefMATH
Metadata
Title
Topology optimization of conductors in electrical circuit
Authors
Katsuya Nomura
Shintaro Yamasaki
Kentaro Yaji
Hiroki Bo
Atsuhiro Takahashi
Takashi Kojima
Kikuo Fujita
Publication date
11-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 6/2019
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-02187-2

Other articles of this Issue 6/2019

Structural and Multidisciplinary Optimization 6/2019 Go to the issue

Premium Partners