Skip to main content
Top
Published in:

31-01-2023

Toward a Brain-Inspired Theory of Artificial Learning

Authors: J. P. Thivierge, Éloïse Giraud, Michael Lynn

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite the rapid progress made by artificial neural networks (ANNs), the design of these models makes it unlikely that incremental improvements will eventually bring them on par with human-level cognitive capabilities. Here, three fundamental shortcomings of ANNs are described, namely the strictly statistical nature of the learning process, the inability to handle universal mappings, and the lack of key structural brain features that constitute the building blocks of behavior and cognition. Solutions to these issues are discussed, including the use of few-shot learning paradigms, network architectures inspired by cytoarchitectural features of the brain, and neuromodulator-derived rules for learning and updating environmental variables. We cast these solutions in the broader context of recent discoveries about the brain. Their implementation in ANNs, however, will require a deeper understanding of the cognitomethe map between elementary cognitive functions and the patterns of neural connections that support them. We contend that to reach true human-level cognitive capabilities, ANNs require both a principled approach to extending their architecture and learning rules and a deep understanding of the cognitome linking brain structures to mental operations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Castillo J, Katz B. Quantal components of the end-plate potential. J Physiol. 1954;124:560–73.CrossRef Castillo J, Katz B. Quantal components of the end-plate potential. J Physiol. 1954;124:560–73.CrossRef
2.
go back to reference Jun J, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017;551:232–6.CrossRef Jun J, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017;551:232–6.CrossRef
3.
go back to reference Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron 2018;100:463–475. Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron 2018;100:463–475.
4.
go back to reference Shine JM, Breakspear M, Bell PT, Martens KE, Shine R, Koyejo O, et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci. 2019;22:289–96.CrossRef Shine JM, Breakspear M, Bell PT, Martens KE, Shine R, Koyejo O, et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci. 2019;22:289–96.CrossRef
5.
go back to reference Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA. Genetic variants in Alzheimer disease — molecular and brain network approaches. Nat Rev Neurol. 2016;12:413–27.CrossRef Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA. Genetic variants in Alzheimer disease — molecular and brain network approaches. Nat Rev Neurol. 2016;12:413–27.CrossRef
6.
go back to reference Kato HK, Asinof SK, Isaacson JS. Network-level control of frequency tuning in auditory cortex. Neuron. 2017;95:412–23.CrossRef Kato HK, Asinof SK, Isaacson JS. Network-level control of frequency tuning in auditory cortex. Neuron. 2017;95:412–23.CrossRef
7.
go back to reference Marquez JC, Li M, Schaak D, Robson DN, Li JM. Internal state dynamics shape brainwide activity and foraging behaviour. Nature. 2020;577:239–43.CrossRef Marquez JC, Li M, Schaak D, Robson DN, Li JM. Internal state dynamics shape brainwide activity and foraging behaviour. Nature. 2020;577:239–43.CrossRef
8.
go back to reference Hebb DO. The organization of behavior. New York: Wiley; 1949. Hebb DO. The organization of behavior. New York: Wiley; 1949.
9.
go back to reference MacLennan BJ. Connectionist approaches. In: Smelser NJ, Baltes PB, editors. International encyclopedia of the social & behavioral sciences. Amsterdam: Elsevier; 2001. p. 2568–73.CrossRef MacLennan BJ. Connectionist approaches. In: Smelser NJ, Baltes PB, editors. International encyclopedia of the social & behavioral sciences. Amsterdam: Elsevier; 2001. p. 2568–73.CrossRef
10.
go back to reference Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psych Rev. 1958;65:386–408. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psych Rev. 1958;65:386–408.
11.
go back to reference Pinker S, Prince A. On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition. 1988;28:73–193.CrossRef Pinker S, Prince A. On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition. 1988;28:73–193.CrossRef
12.
go back to reference Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29:2352–449.MathSciNetCrossRef Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29:2352–449.MathSciNetCrossRef
13.
go back to reference Zador AM. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat Comm. 2019;10:3770.CrossRef Zador AM. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat Comm. 2019;10:3770.CrossRef
14.
go back to reference Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 2010;22:3207–20.CrossRef Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 2010;22:3207–20.CrossRef
15.
16.
go back to reference Boucher-Routhier M, Zhang BLF, Thivierge JP. Extreme neural machines. Neural Netw. 2021;144:639–47.CrossRef Boucher-Routhier M, Zhang BLF, Thivierge JP. Extreme neural machines. Neural Netw. 2021;144:639–47.CrossRef
17.
go back to reference Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D. Matching networks for one shot learning. Adv Neur In. 2016;29. Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D. Matching networks for one shot learning. Adv Neur In. 2016;29.
19.
go back to reference Mei J, Muller E, Ramaswamy S. Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends Neurosci. 2022;45:237–50.CrossRef Mei J, Muller E, Ramaswamy S. Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends Neurosci. 2022;45:237–50.CrossRef
20.
go back to reference Grossman CD, Bari BA, Cohen JY. Serotonin neurons modulate learning rate through uncertainty. Curr Biol. 2022;32:1–14.CrossRef Grossman CD, Bari BA, Cohen JY. Serotonin neurons modulate learning rate through uncertainty. Curr Biol. 2022;32:1–14.CrossRef
21.
go back to reference Cohen JY, Amoroso MW, Uchida N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife. 2015;4:e06346. Cohen JY, Amoroso MW, Uchida N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife. 2015;4:e06346.
22.
go back to reference Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018;97:769–85.CrossRef Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018;97:769–85.CrossRef
23.
go back to reference Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition. Trends Neurosci. 2007;30:251–9.CrossRef Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition. Trends Neurosci. 2007;30:251–9.CrossRef
24.
go back to reference Seidenberg MS, Elman JL. Networks are not ‘hidden rules.’ Trends Cogn Sci. 1999;3:288–9.CrossRef Seidenberg MS, Elman JL. Networks are not ‘hidden rules.’ Trends Cogn Sci. 1999;3:288–9.CrossRef
25.
go back to reference O’Reilly RC. Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learning. Neural Comput. 2001;13:1199–241.CrossRef O’Reilly RC. Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learning. Neural Comput. 2001;13:1199–241.CrossRef
26.
go back to reference Smolensky P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif Intell. 1990;46:159–216.MathSciNetCrossRef Smolensky P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif Intell. 1990;46:159–216.MathSciNetCrossRef
27.
go back to reference Huang Y, Xue X, Spelke E, Huang L, Zhang W, Peng K. The aesthetic preference for symmetry dissociates from early-emerging attention to symmetry. Sci Rep. 2018;8:6263.CrossRef Huang Y, Xue X, Spelke E, Huang L, Zhang W, Peng K. The aesthetic preference for symmetry dissociates from early-emerging attention to symmetry. Sci Rep. 2018;8:6263.CrossRef
28.
go back to reference Plebe A. La difficoltà nel simulare la semplicità. Proceedings of the 13th Annual Conference of the Italian Association for Cognitive Sciences. Mind the gap: brain, cognition and society; 2016 Nov 24–26; Turin, Italy. Plebe A. La difficoltà nel simulare la semplicità. Proceedings of the 13th Annual Conference of the Italian Association for Cognitive Sciences. Mind the gap: brain, cognition and society; 2016 Nov 24–26; Turin, Italy.
29.
go back to reference Lee KFH, Soares C, Thivierge JP, Béïque JC. Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron. 2016;89:784–99.CrossRef Lee KFH, Soares C, Thivierge JP, Béïque JC. Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron. 2016;89:784–99.CrossRef
30.
go back to reference Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci. 2018;19:17–33.CrossRef Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci. 2018;19:17–33.CrossRef
31.
go back to reference Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci. 2017;20:340–52.CrossRef Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci. 2017;20:340–52.CrossRef
34.
go back to reference Ravi S, Larochelle H. Optimization as a model for few-shot learning. 5th International Conference on Learning Representations; 2017 April 24–26; Toulon, France. Ravi S, Larochelle H. Optimization as a model for few-shot learning. 5th International Conference on Learning Representations; 2017 April 24–26; Toulon, France.
35.
go back to reference Lake BM, Salakhutdinov R, Tenenbaum JB. The Omniglot challenge: a 3-year progress report. Behav Sci. 2019;29:97–104. Lake BM, Salakhutdinov R, Tenenbaum JB. The Omniglot challenge: a 3-year progress report. Behav Sci. 2019;29:97–104.
37.
go back to reference Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat Neurosci. 2010;13:1020–6.CrossRef Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat Neurosci. 2010;13:1020–6.CrossRef
38.
go back to reference Kulkarni TD, Narasimhan KR, Saeedi A, Tenenbaum JB. Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. Adv Neur In 2016;30. Kulkarni TD, Narasimhan KR, Saeedi A, Tenenbaum JB. Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. Adv Neur In 2016;30.
41.
go back to reference Krimer LS, Goldman-Rakic PS. Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci. 2001;21:3788–96.CrossRef Krimer LS, Goldman-Rakic PS. Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci. 2001;21:3788–96.CrossRef
43.
go back to reference Achler T. Symbolic neural networks for cognitive capacities. Biol Inspired Cog Arch. 2014;9:71–81. Achler T. Symbolic neural networks for cognitive capacities. Biol Inspired Cog Arch. 2014;9:71–81.
48.
go back to reference Marcus G, Marblestone A, Dean T. The atoms of neural computation. Science. 2014;6209:551–3.CrossRef Marcus G, Marblestone A, Dean T. The atoms of neural computation. Science. 2014;6209:551–3.CrossRef
Metadata
Title
Toward a Brain-Inspired Theory of Artificial Learning
Authors
J. P. Thivierge
Éloïse Giraud
Michael Lynn
Publication date
31-01-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10121-y

Premium Partner