Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

8. Toward All-Carbon Hybrid Solar Cells

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

As one of p-type semiconductors with direct bandgap, semiconducting single-walled carbon nanotubes (sc-SWCNTs) possess ultrahigh carrier mobility, unique electron structures, high light absorption coefficient and other physical properties, which have been widely used in novel photodetectors and photovoltaic devices. While fullerenes are typical n-type semiconductors and metallic SWCNTs (or graphene) usually behave as carrier transport channel due to the high carrier mobility. Taking advantage of the excellent physical properties of different carbon nanomaterials, a new concept photovoltaic device, all-carbon solar cell, is expected to be developed by combing semiconducting and metallic carbon allotropes on the basis of the optimal design of band arrangements. In this chapter, we firstly introduce the photoexcitation transfer dynamics and bandgap structure limits of sc-SWCNTs in the sc-SWCNT/fullerene heterojunctions, respectively. Then, the solar cells based on all-carbon bulk and planar heterojunctions as active layers have been discussed. Finally, the recent progress about all-carbon solar cells have been highlighted, and several feasible approaches to improve the performance have also been proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013). Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev, 42(7): 2824–2860. CrossRef Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013). Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev, 42(7): 2824–2860. CrossRef
2.
go back to reference Liu Y, Wang S, Liu H, Peng LM (2017). Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat Commun 8(1): 1–8. CrossRef Liu Y, Wang S, Liu H, Peng LM (2017). Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat Commun 8(1): 1–8. CrossRef
3.
go back to reference Lin S, Lu Y, Xu J, Feng S, Li J (2017). High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy, 40: 122–148. CrossRef Lin S, Lu Y, Xu J, Feng S, Li J (2017). High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy, 40: 122–148. CrossRef
4.
go back to reference Di Bartolomeo A (2016). Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep, 606: 1–58. CrossRef Di Bartolomeo A (2016). Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep, 606: 1–58. CrossRef
5.
go back to reference Martín N (2017). Carbon nanoforms for photovoltaics: Myth or Reality? Adv Energy Mater, 7(10): 1601102. CrossRef Martín N (2017). Carbon nanoforms for photovoltaics: Myth or Reality? Adv Energy Mater, 7(10): 1601102. CrossRef
6.
go back to reference Cai BF, Su YJ, Tao ZJ, Hu J, Zou C, Yang Z, Zhang YF (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef Cai BF, Su YJ, Tao ZJ, Hu J, Zou C, Yang Z, Zhang YF (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef
7.
go back to reference Avouris P, Freitag M, Perebeinos V (2008). Carbon-nanotube photonics and optoelectronics. Nat Photonics, 2(6): 341–350. CrossRef Avouris P, Freitag M, Perebeinos V (2008). Carbon-nanotube photonics and optoelectronics. Nat Photonics, 2(6): 341–350. CrossRef
8.
go back to reference Pfohl M, Glaser K, Graf A, Mertens A, Flavel BS (2016). Probing the diameter limit of single walled carbon nanotubes in SWCNT: fullerene solar cells. Adv Energy Mater, 6(21): 1600890. CrossRef Pfohl M, Glaser K, Graf A, Mertens A, Flavel BS (2016). Probing the diameter limit of single walled carbon nanotubes in SWCNT: fullerene solar cells. Adv Energy Mater, 6(21): 1600890. CrossRef
9.
go back to reference Mehlenbacher RD, Wu MY, Grechko M, Laaser JE, Arnold MS, Zanni MT (2013). Photoexcitation dynamics of coupled semiconducting carbon nanotube thin films. Nano Lett, 13(4): 1495–1501. CrossRef Mehlenbacher RD, Wu MY, Grechko M, Laaser JE, Arnold MS, Zanni MT (2013). Photoexcitation dynamics of coupled semiconducting carbon nanotube thin films. Nano Lett, 13(4): 1495–1501. CrossRef
10.
go back to reference Grechko M, Ye Y, Mehlenbacher RD, McDonough TJ, Wu MY, Jacobberger RM, Arnold MS, Zanni MT (2014). Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano, 8(6): 5383–5394. CrossRef Grechko M, Ye Y, Mehlenbacher RD, McDonough TJ, Wu MY, Jacobberger RM, Arnold MS, Zanni MT (2014). Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano, 8(6): 5383–5394. CrossRef
11.
go back to reference Kafle TR, Wang T, Kattel B, Liu Q, Gong Y, Wu J, Chan WL (2016). Hot exciton relaxation and exciton trapping in single-walled carbon nanotube thin films. J Phys Chem C, 120: 24482–24490. CrossRef Kafle TR, Wang T, Kattel B, Liu Q, Gong Y, Wu J, Chan WL (2016). Hot exciton relaxation and exciton trapping in single-walled carbon nanotube thin films. J Phys Chem C, 120: 24482–24490. CrossRef
12.
go back to reference Ferguson AJ, Dowgiallo AM, Bindl DJ, Mistry KS, Reid OG, Kopidakis N, Arnold MS, Blackburn JL (2015). Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers. Phys Rev B, 91(24): 245311. Ferguson AJ, Dowgiallo AM, Bindl DJ, Mistry KS, Reid OG, Kopidakis N, Arnold MS, Blackburn JL (2015). Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers. Phys Rev B, 91(24): 245311.
13.
go back to reference Dowgiallo AM, Mistry KS, Johnson JC, Blackburn JL (2014). Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60. ACS Nano, 8(8): 8573–8581. CrossRef Dowgiallo AM, Mistry KS, Johnson JC, Blackburn JL (2014). Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60. ACS Nano, 8(8): 8573–8581. CrossRef
14.
go back to reference Bindl DJ, Ferguson AJ, Wu MY, Kopidakis N, Blackburn JL, Arnold MS (2013). Free carrier generation and recombination in polymer-wrapped semiconducting carbon nanotube films and heterojunctions. J Phys Chem Lett, 4(21), 3550–3559. CrossRef Bindl DJ, Ferguson AJ, Wu MY, Kopidakis N, Blackburn JL, Arnold MS (2013). Free carrier generation and recombination in polymer-wrapped semiconducting carbon nanotube films and heterojunctions. J Phys Chem Lett, 4(21), 3550–3559. CrossRef
15.
go back to reference Dowgiallo AM, Mistry KS, Johnson JC, Reid OG, Blackburn JL (2016). Probing exciton diffusion and dissociation in single-walled carbon nanotube-C 60 heterojunctions. J Phys Chem Lett, 7(10): 1794–1799. CrossRef Dowgiallo AM, Mistry KS, Johnson JC, Reid OG, Blackburn JL (2016). Probing exciton diffusion and dissociation in single-walled carbon nanotube-C 60 heterojunctions. J Phys Chem Lett, 7(10): 1794–1799. CrossRef
16.
go back to reference Tune DD, Shapter JG (2013). The potential sunlight harvesting efficiency of carbon nanotube solar cells. Energy Environ Sci, 6, 2572–2577. CrossRef Tune DD, Shapter JG (2013). The potential sunlight harvesting efficiency of carbon nanotube solar cells. Energy Environ Sci, 6, 2572–2577. CrossRef
17.
go back to reference Bindl DJ, Brewer AS, Arnold MS (2011). Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Res, 4(11): 1174–1179. CrossRef Bindl DJ, Brewer AS, Arnold MS (2011). Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Res, 4(11): 1174–1179. CrossRef
18.
go back to reference M Gong, TA Shastry, Y Xie, M Bernardi, D Jasion (2014). Polychiral semiconducting carbon nanotube-fullerene solar cells. Nano Lett, 14(9): 5308–5314. CrossRef M Gong, TA Shastry, Y Xie, M Bernardi, D Jasion (2014). Polychiral semiconducting carbon nanotube-fullerene solar cells. Nano Lett, 14(9): 5308–5314. CrossRef
19.
go back to reference Gong M, Shastry TA, Cui Q, Kohlmeyer RR, Luck KA, Rowberg A, Marks TJ, Durstock MF, Zhao H, Hersam MC, Ren S (2015). Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. ACS Appl Mater Interfaces, 7(13): 7428–7435. CrossRef Gong M, Shastry TA, Cui Q, Kohlmeyer RR, Luck KA, Rowberg A, Marks TJ, Durstock MF, Zhao H, Hersam MC, Ren S (2015). Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. ACS Appl Mater Interfaces, 7(13): 7428–7435. CrossRef
20.
go back to reference Shastry TA, Clark SC, Rowberg AJ, Luck KA, Chen KS, Marks TJ, Hersam MC (2016). Enhanced uniformity and area scaling in carbon nanotube-fullerene bulk-heterojunction solar cells enabled by solvent additives. Adv Energy Mater, 6(2): 1501466. CrossRef Shastry TA, Clark SC, Rowberg AJ, Luck KA, Chen KS, Marks TJ, Hersam MC (2016). Enhanced uniformity and area scaling in carbon nanotube-fullerene bulk-heterojunction solar cells enabled by solvent additives. Adv Energy Mater, 6(2): 1501466. CrossRef
21.
go back to reference Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S (2012) Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896–8903. CrossRef Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S (2012) Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896–8903. CrossRef
22.
go back to reference Isborn CM, Tang C, Martini A, Johnson ER, Otero-de-la-Roza A, Tung VC (2013). Carbon nanotube chirality determines efficiency of electron transfer to fullerene in all-carbon photovoltaics. J Phys Chem Lett, 4(17): 2914–2918. CrossRef Isborn CM, Tang C, Martini A, Johnson ER, Otero-de-la-Roza A, Tung VC (2013). Carbon nanotube chirality determines efficiency of electron transfer to fullerene in all-carbon photovoltaics. J Phys Chem Lett, 4(17): 2914–2918. CrossRef
23.
go back to reference Bindl DJ, Wu MY, Prehn FC, Arnold MS (2011). Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett, 11(2): 455–460. CrossRef Bindl DJ, Wu MY, Prehn FC, Arnold MS (2011). Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett, 11(2): 455–460. CrossRef
24.
go back to reference Bindl DJ, Arnold MS (2013). Efficient exciton relaxation and charge generation in nearly monochiral (7,5) carbon nanotube/C 60 thin-film photovoltaics. J Phys Chem C, 117(5): 2390–2395. CrossRef Bindl DJ, Arnold MS (2013). Efficient exciton relaxation and charge generation in nearly monochiral (7,5) carbon nanotube/C 60 thin-film photovoltaics. J Phys Chem C, 117(5): 2390–2395. CrossRef
25.
go back to reference Guillot SL, Mistry KS, Avery AD, Richard J, Dowgiallo AM, Ndione PF, van de Lagemaat J, Reese MO, Blackburn JL (2015). Precision printing and optical modeling of ultrathin SWCNT/C 60 heterojunction solar cells. Nanoscale 7(15), 6556–6566. CrossRef Guillot SL, Mistry KS, Avery AD, Richard J, Dowgiallo AM, Ndione PF, van de Lagemaat J, Reese MO, Blackburn JL (2015). Precision printing and optical modeling of ultrathin SWCNT/C 60 heterojunction solar cells. Nanoscale 7(15), 6556–6566. CrossRef
26.
go back to reference Wang H, Koleilat GI, Liu P, Jiménez-Osés G, Lai YC, Vosgueritchian M, Fang Y, Park S, Houk KN, Bao ZN (2014). High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano, 8: 2609–2617. CrossRef Wang H, Koleilat GI, Liu P, Jiménez-Osés G, Lai YC, Vosgueritchian M, Fang Y, Park S, Houk KN, Bao ZN (2014). High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano, 8: 2609–2617. CrossRef
27.
go back to reference Koleilat GI, Vosgueritchian M, Lei T, Zhou Y, Lin DW, Lissel F, Lin P, To JWF, Xie T, England K, Zhang Y, Bao ZN (2016). Surpassing the exciton diffusion limit in single-walled carbon nanotube sensitized solar cells. ACS Nano, 10(12): 11258–11265. CrossRef Koleilat GI, Vosgueritchian M, Lei T, Zhou Y, Lin DW, Lissel F, Lin P, To JWF, Xie T, England K, Zhang Y, Bao ZN (2016). Surpassing the exciton diffusion limit in single-walled carbon nanotube sensitized solar cells. ACS Nano, 10(12): 11258–11265. CrossRef
28.
go back to reference Classen A, Einsiedler L, Heumueller T, Graf A, Brohmann M, Berger F, Kahmann S, Richter M, Matt GJ, Forberich K, Zaumseil J (2019). Absence of charge transfer state enables very low V OC losses in SWCNT: fullerene solar cells. Adv Energy Mater, 9(1), 1801913. CrossRef Classen A, Einsiedler L, Heumueller T, Graf A, Brohmann M, Berger F, Kahmann S, Richter M, Matt GJ, Forberich K, Zaumseil J (2019). Absence of charge transfer state enables very low V OC losses in SWCNT: fullerene solar cells. Adv Energy Mater, 9(1), 1801913. CrossRef
29.
go back to reference Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, Mcnicholas TP, Gleason KK, Strano MS (2012). Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater, 24(32): 4436–4439. CrossRef Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, Mcnicholas TP, Gleason KK, Strano MS (2012). Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater, 24(32): 4436–4439. CrossRef
30.
go back to reference Tung VC, Huang JH, Tevis I, Kim F, Kim J, Chu CW, Stupp SI, Huang JX (2011). Surfactant-free water–processable photoconductive all-carbon composite. J Am Chem Soc, 133(13): 4940–4947. CrossRef Tung VC, Huang JH, Tevis I, Kim F, Kim J, Chu CW, Stupp SI, Huang JX (2011). Surfactant-free water–processable photoconductive all-carbon composite. J Am Chem Soc, 133(13): 4940–4947. CrossRef
31.
go back to reference Shea MJ, Arnold MS (2013). 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl Phys Lett, 102: 243101. Shea MJ, Arnold MS (2013). 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl Phys Lett, 102: 243101.
32.
go back to reference Pfohl M, Glaser K, Ludwig J, Tune DD, Dehm S, Kayser C, Colsmann A, Krupke R, Flavel BS (2016). Performance enhancement of polymer-free carbon nanotube solar cells via transfer matrix modeling. Adv Energy Mater, 6(1): 1501345. CrossRef Pfohl M, Glaser K, Ludwig J, Tune DD, Dehm S, Kayser C, Colsmann A, Krupke R, Flavel BS (2016). Performance enhancement of polymer-free carbon nanotube solar cells via transfer matrix modeling. Adv Energy Mater, 6(1): 1501345. CrossRef
33.
go back to reference Tung VC, Huang JH, Kim J, Smith AJ, Chu CW, Huang JX (2012). Towards solution processed all-carbon solar cells: a perspective. Energy Environ Sci, 5(7): 7810–7818. CrossRef Tung VC, Huang JH, Kim J, Smith AJ, Chu CW, Huang JX (2012). Towards solution processed all-carbon solar cells: a perspective. Energy Environ Sci, 5(7): 7810–7818. CrossRef
34.
go back to reference Ramuz MP, Vosgueritchian M, Wei P, Wang CG, Gao YL, Wu YP, Chen YS, Bao ZN (2012). Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano, 6(11): 10384–10395. CrossRef Ramuz MP, Vosgueritchian M, Wei P, Wang CG, Gao YL, Wu YP, Chen YS, Bao ZN (2012). Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano, 6(11): 10384–10395. CrossRef
Metadata
Title
Toward All-Carbon Hybrid Solar Cells
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_8