Skip to main content
Top
Published in: Journal of Coatings Technology and Research 4/2021

07-04-2021

Toward CNT-reinforced chitosan-based ceramic composite coatings on biodegradable magnesium for surgical implants

Authors: A. A. Francis, S. A. Abdel-Gawad, M. A. Shoeib

Published in: Journal of Coatings Technology and Research | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomaterials containing carbon nanotubes (CNTs) represent a class of composites, which have generally been underexploited in the medical field. However, recognition of the potential utility of this class of composite materials may form the basis to develop new CNT biomaterials for implants and regenerative medicine scaffolds. Nanocomposite coatings containing chitosan matrix (CHI) reinforced with multiwall CNTs and CaHPO4 (DCPA) were deposited on pure magnesium substrates using a flexible chemical conversion approach. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were applied to characterize the morphological, chemical, and physical changes that occurred in the composite coatings. The in vitro degradation behavior of the composite-coated samples was evaluated using electrochemical impedance spectroscopy in Hank’s solution. Results showed that the tri-phasic composite coating (CHI/CNTs/DCPA) exhibits the highest electrochemical corrosion resistance in comparison with the bi-phasic composite coating (CHI/CNTs and CHI/DCPA) and monophasic CHI-coated magnesium. Potentiodynamic polarization results in Hank’s solution indicate that the corrosion potential of the tri-phasic coated Mg is − 1.5 V, while the corrosion current density reaches 0.36 µA/cm2. Functionalization of the Mg surface by activation at 75°C produces a rough surface that triggers a combination of chemical and physical interactions between the three phases and Mg ions present in the reaction medium. The bi-phasic (CHI/CNTS) and tri-phasic (CHI/CNTs/CaHPO4) composite coatings revealed high antibacterial performance against Staphylococcus aureus. These corrosion results and the successful deposition of CNT-reinforced CHI/DCPA on pure Mg substrate suggest that the conversion coating approach is effective for the production of new composite coatings for either regenerative medicine or functional implants. As such, the present research might lay the groundwork for a new generation of uses for this versatile class of composite coating materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hornberger, H, Virtanen, S, Boccaccini, AR, "Biomedical Coatings on Magnesium Alloys: A Review." Acta Biomater., 8 2442–2455 (2012)CrossRef Hornberger, H, Virtanen, S, Boccaccini, AR, "Biomedical Coatings on Magnesium Alloys: A Review." Acta Biomater., 8 2442–2455 (2012)CrossRef
2.
go back to reference Virtanen, S, "Biodegradable Mg and Mg Alloys: Corrosion and Biocompatibility." Mater. Sci. Eng. B., 176 1600–1608 (2011)CrossRef Virtanen, S, "Biodegradable Mg and Mg Alloys: Corrosion and Biocompatibility." Mater. Sci. Eng. B., 176 1600–1608 (2011)CrossRef
3.
go back to reference Heise, S, Virtanen, S, Boccaccini, AR, "Tackling Mg Alloy Corrosion by Natural Polymer Coatings: A Review." J. Biomed. Mater. Res. Part A, 104 2628–2641 (2016)CrossRef Heise, S, Virtanen, S, Boccaccini, AR, "Tackling Mg Alloy Corrosion by Natural Polymer Coatings: A Review." J. Biomed. Mater. Res. Part A, 104 2628–2641 (2016)CrossRef
4.
go back to reference Abdel-Gawad, SA, Shoeib, MA, "Corrosion Studies and Microstructure of Mg−Zn−Ca Alloys for Biomedical Applications." Surf. Interfaces, 14 108–116 (2019)CrossRef Abdel-Gawad, SA, Shoeib, MA, "Corrosion Studies and Microstructure of Mg−Zn−Ca Alloys for Biomedical Applications." Surf. Interfaces, 14 108–116 (2019)CrossRef
5.
go back to reference Shadanbaz, S, Dias, JG, "Calcium Phosphate Coatings on Magnesium Alloys for Biomedical Applications: A Review." Acta Biomater., 8 20–30 (2012)CrossRef Shadanbaz, S, Dias, JG, "Calcium Phosphate Coatings on Magnesium Alloys for Biomedical Applications: A Review." Acta Biomater., 8 20–30 (2012)CrossRef
6.
go back to reference Wang, S, McDonnell, EH, Sedor, FA, Toffaletti, JG, "pH Effects on Measurements of Ionized Calcium and Ionized Magnesium in Blood." Arch. Pathol. Lab. Med., 126 947–50 (2002)CrossRef Wang, S, McDonnell, EH, Sedor, FA, Toffaletti, JG, "pH Effects on Measurements of Ionized Calcium and Ionized Magnesium in Blood." Arch. Pathol. Lab. Med., 126 947–50 (2002)CrossRef
7.
go back to reference Dash, M, Chiellini, F, Ottenbrite, RM, Chiellini, E, "Chitosan: A Versatile Semi-synthetic Polymer in Biomedical Applications." Prog. Polym. Sci., 36 981–1014 (2011)CrossRef Dash, M, Chiellini, F, Ottenbrite, RM, Chiellini, E, "Chitosan: A Versatile Semi-synthetic Polymer in Biomedical Applications." Prog. Polym. Sci., 36 981–1014 (2011)CrossRef
8.
go back to reference Ilium, L, "Chitosan and Its Use as a Pharmaceutical Excipient." Pharm. Res., 15 1326–1331 (1998)CrossRef Ilium, L, "Chitosan and Its Use as a Pharmaceutical Excipient." Pharm. Res., 15 1326–1331 (1998)CrossRef
9.
go back to reference Dorozhkin, SV, "Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys." Acta Biomater., 10 2919–2934 (2014)CrossRef Dorozhkin, SV, "Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys." Acta Biomater., 10 2919–2934 (2014)CrossRef
10.
go back to reference Avcu, E, Baştan, FE, Abdullah, HZ, Rehman, MAU, Avcu, YY, Boccaccini, AR, "Electrophoretic Deposition of Chitosan-Based Composite Coatings for Biomedical Applications: A Review." Prog. Mater. Sci., 103 69–108 (2019)CrossRef Avcu, E, Baştan, FE, Abdullah, HZ, Rehman, MAU, Avcu, YY, Boccaccini, AR, "Electrophoretic Deposition of Chitosan-Based Composite Coatings for Biomedical Applications: A Review." Prog. Mater. Sci., 103 69–108 (2019)CrossRef
11.
go back to reference Francis, A, Virtanen, S, Turhan, MC, Boccaccini, AR, "Investigating the Effect of Salicylate Salt in Enhancing the Corrosion Resistance of AZ91 Magnesium Alloy for Biomedical Applications." BioNanoMaterials, 17 113–119 (2016)CrossRef Francis, A, Virtanen, S, Turhan, MC, Boccaccini, AR, "Investigating the Effect of Salicylate Salt in Enhancing the Corrosion Resistance of AZ91 Magnesium Alloy for Biomedical Applications." BioNanoMaterials, 17 113–119 (2016)CrossRef
12.
go back to reference Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, KMC, "A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants." Biomaterials, 31 2084–2096 (2010)CrossRef Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, KMC, "A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants." Biomaterials, 31 2084–2096 (2010)CrossRef
13.
go back to reference Shen, S, Cai, S, Xu, G, Zhao, H, Niu, S, Zhang, R, "Influence of Heat Treatment on Bond Strength and Corrosion Resistance of Sol–Gel Derived Bioglass–Ceramic Coatings on Magnesium Alloy." J. Mech. Behav. Biomed. Mater., 45 166–174 (2015)CrossRef Shen, S, Cai, S, Xu, G, Zhao, H, Niu, S, Zhang, R, "Influence of Heat Treatment on Bond Strength and Corrosion Resistance of Sol–Gel Derived Bioglass–Ceramic Coatings on Magnesium Alloy." J. Mech. Behav. Biomed. Mater., 45 166–174 (2015)CrossRef
14.
go back to reference López, MMM, Fauré, J, Cabrera, MIE, García, MEC, "Structural Characterization and Electrochemical Behavior of 45S5 Bioglass Coating on Ti6Al4V Alloy for Dental Applications." Mater. Sci. Eng. B, 206 30–38 (2016)CrossRef López, MMM, Fauré, J, Cabrera, MIE, García, MEC, "Structural Characterization and Electrochemical Behavior of 45S5 Bioglass Coating on Ti6Al4V Alloy for Dental Applications." Mater. Sci. Eng. B, 206 30–38 (2016)CrossRef
15.
go back to reference Pishbin, F, Simchi, A, Ryan, MP, Boccaccini,AR, "Electrophoretic Deposition of Chitosan/45S5 Bioglass® Composite Coatings for Orthopaedic Applications." Surf. Coatings Technol., 205 5260–5268 (2011)CrossRef Pishbin, F, Simchi, A, Ryan, MP, Boccaccini,AR, "Electrophoretic Deposition of Chitosan/45S5 Bioglass® Composite Coatings for Orthopaedic Applications." Surf. Coatings Technol., 205 5260–5268 (2011)CrossRef
16.
go back to reference Zhitomirsky, D, Roether, JA, Boccaccini, AR, Zhitomirsky, I, "Electrophoretic Deposition of Bioactive Glass/Polymer Composite Coatings With and Without HA Nanoparticle Inclusions for Biomedical Applications." J. Mater. Process. Technol., 209 1853–1860 (2009)CrossRef Zhitomirsky, D, Roether, JA, Boccaccini, AR, Zhitomirsky, I, "Electrophoretic Deposition of Bioactive Glass/Polymer Composite Coatings With and Without HA Nanoparticle Inclusions for Biomedical Applications." J. Mater. Process. Technol., 209 1853–1860 (2009)CrossRef
17.
go back to reference Francis, A, Yang, Y, Boccaccini, AR, "A New Strategy for Developing Chitosan Conversion Coating on Magnesium Substrates for Orthopedic Implants." Appl. Surf. Sci. 466 854–862 (2019)CrossRef Francis, A, Yang, Y, Boccaccini, AR, "A New Strategy for Developing Chitosan Conversion Coating on Magnesium Substrates for Orthopedic Implants." Appl. Surf. Sci. 466 854–862 (2019)CrossRef
18.
go back to reference Saito, N, Usui, Y, Aoki, K, Narita, N, Shimizu, M, Ogiwara, N, Nakamura, K, Ishigaki, N, Kato, H, Taruta, S, Endo, M, "Carbon Nanotubes for Biomaterials in Contact with Bone." Curr. Med. Chem., 15 523–527 (2008)CrossRef Saito, N, Usui, Y, Aoki, K, Narita, N, Shimizu, M, Ogiwara, N, Nakamura, K, Ishigaki, N, Kato, H, Taruta, S, Endo, M, "Carbon Nanotubes for Biomaterials in Contact with Bone." Curr. Med. Chem., 15 523–527 (2008)CrossRef
19.
go back to reference Shokrgozar, MA, Mottaghitalab, F, Mottaghitalab, V, Farokhi, M, "Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering." J. Biomed. Nanotechnol., 7 276– 284 (2011)CrossRef Shokrgozar, MA, Mottaghitalab, F, Mottaghitalab, V, Farokhi, M, "Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering." J. Biomed. Nanotechnol., 7 276– 284 (2011)CrossRef
20.
go back to reference Cheng, Q, Rutledge, K, Jabbarzadeh, E, "Carbon Nanotube–Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications." Ann. Biomed. Eng., 41 904–916 (2013)CrossRef Cheng, Q, Rutledge, K, Jabbarzadeh, E, "Carbon Nanotube–Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications." Ann. Biomed. Eng., 41 904–916 (2013)CrossRef
21.
go back to reference De Mesquita, JP, Donnici, CL, Pereira, FV, "Biobased Nanocomposites from Layer-by-Layer Assembly of Cellulose Nanowhiskers with Chitosan." Biomacromolecules, 11 473–480 (2010)CrossRef De Mesquita, JP, Donnici, CL, Pereira, FV, "Biobased Nanocomposites from Layer-by-Layer Assembly of Cellulose Nanowhiskers with Chitosan." Biomacromolecules, 11 473–480 (2010)CrossRef
22.
go back to reference Laredo, E, Grimau, M, Bello, A, Wu, DF, Zhang, YS, Lin, DP, "AC Conductivity of Selectively Located Carbon Nanotubes in Poly(ε-caprolactone)/Polylactide Blend Nanocomposites." Biomacromolecules 11 1339–1347 (2010)CrossRef Laredo, E, Grimau, M, Bello, A, Wu, DF, Zhang, YS, Lin, DP, "AC Conductivity of Selectively Located Carbon Nanotubes in Poly(ε-caprolactone)/Polylactide Blend Nanocomposites." Biomacromolecules 11 1339–1347 (2010)CrossRef
23.
go back to reference Im, O, Li, J, Wang, M, Zhang, LG, Keidar, M, "Biomimetic Three-Dimensional Nanocrystalline Hydroxyapatite and Magnetically Synthesized Single-Walled Carbon Nanotube Chitosan Nanocomposite for Bone Regeneration." Int. J. Nanomedicine, 7 2087-2099 (2012) Im, O, Li, J, Wang, M, Zhang, LG, Keidar, M, "Biomimetic Three-Dimensional Nanocrystalline Hydroxyapatite and Magnetically Synthesized Single-Walled Carbon Nanotube Chitosan Nanocomposite for Bone Regeneration." Int. J. Nanomedicine, 7 2087-2099 (2012)
24.
go back to reference Lee, HH, Shin, US, Jin, GZ, Kim, HW, "Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs." Bull. Korean Chem. Soc., 32 157–161 (2011)CrossRef Lee, HH, Shin, US, Jin, GZ, Kim, HW, "Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs." Bull. Korean Chem. Soc., 32 157–161 (2011)CrossRef
25.
go back to reference Famá, LM, Pettarin, V, Goyanes, SN, Bernal, CR, "Starch/Multi-Walled Carbon Nanotubes Composites with Improved Mechanical Properties." Carbohydr. Polym., 83 1226–1231 (2011)CrossRef Famá, LM, Pettarin, V, Goyanes, SN, Bernal, CR, "Starch/Multi-Walled Carbon Nanotubes Composites with Improved Mechanical Properties." Carbohydr. Polym., 83 1226–1231 (2011)CrossRef
26.
go back to reference Murugan, N, Sundaramurthy, A, Chen, SM, Sundramoorthy, AK, "Graphene Oxide/Oxidized Carbon Nanofiber/Mineralized Hydroxyapatite Based Hybrid Composite for Biomedical Applications." Mater. Res. Express, 4 124005 (2017) Murugan, N, Sundaramurthy, A, Chen, SM, Sundramoorthy, AK, "Graphene Oxide/Oxidized Carbon Nanofiber/Mineralized Hydroxyapatite Based Hybrid Composite for Biomedical Applications." Mater. Res. Express, 4 124005 (2017)
27.
go back to reference Chen, L, Hu, J, Shen, X, Tong, H, "Synthesis and Characterization of Chitosan–Multiwalled Carbon Nanotubes/Hydroxyapatite Nanocomposites for Bone Tissue Engineering." J. Mater. Sci. Mater. Med., 24 1843–1851 (2013)CrossRef Chen, L, Hu, J, Shen, X, Tong, H, "Synthesis and Characterization of Chitosan–Multiwalled Carbon Nanotubes/Hydroxyapatite Nanocomposites for Bone Tissue Engineering." J. Mater. Sci. Mater. Med., 24 1843–1851 (2013)CrossRef
28.
go back to reference Harrison, BS, Atala, A, "Carbon Nanotube Applications for Tissue Engineering." Biomaterials, 28 344–353 (2007)CrossRef Harrison, BS, Atala, A, "Carbon Nanotube Applications for Tissue Engineering." Biomaterials, 28 344–353 (2007)CrossRef
29.
go back to reference MacDonald, RA, Laurenzi, BF, Viswanathan, G, Ajayan, PM, Stegemann, JP, "Collagen-Carbon Nanotube Composite Materials as Scaffolds in Tissue Engineering." J. Biomed. Mater. Res. Part A, 74 489–496 (2005)CrossRef MacDonald, RA, Laurenzi, BF, Viswanathan, G, Ajayan, PM, Stegemann, JP, "Collagen-Carbon Nanotube Composite Materials as Scaffolds in Tissue Engineering." J. Biomed. Mater. Res. Part A, 74 489–496 (2005)CrossRef
30.
go back to reference Price, RL, Waid, MC, Haberstroh, KM, Webster, TJ, "Selective Bone Cell Adhesion on Formulations Containing Carbon Nanofibers." Biomaterials, 24 1877–1887 (2003)CrossRef Price, RL, Waid, MC, Haberstroh, KM, Webster, TJ, "Selective Bone Cell Adhesion on Formulations Containing Carbon Nanofibers." Biomaterials, 24 1877–1887 (2003)CrossRef
31.
go back to reference Sathiyanarayanan, S, Marikkannu, C, Srinivasan, PB, Muthupandi, V, "Corrosion Behaviour of Ti6Al4V and Duplex Stainless Steel (UNS31803) in Synthetic Bio‐Fluids." Anti-Corrosion Methods Mater., 49 33–37 (2002)CrossRef Sathiyanarayanan, S, Marikkannu, C, Srinivasan, PB, Muthupandi, V, "Corrosion Behaviour of Ti6Al4V and Duplex Stainless Steel (UNS31803) in Synthetic Bio‐Fluids." Anti-Corrosion Methods Mater., 49 33–37 (2002)CrossRef
32.
go back to reference Santamaria, M, Di Quarto, F, Zanna, S, Marcus, P, "Initial Surface Film on Magnesium Metal: A Characterization by X-ray Photoelectron Spectroscopy (XPS) and Photocurrent Spectroscopy (PCS)." Electrochim. Acta, 53 1314–1324 (2007)CrossRef Santamaria, M, Di Quarto, F, Zanna, S, Marcus, P, "Initial Surface Film on Magnesium Metal: A Characterization by X-ray Photoelectron Spectroscopy (XPS) and Photocurrent Spectroscopy (PCS)." Electrochim. Acta, 53 1314–1324 (2007)CrossRef
33.
go back to reference Feliu, S, Pardo, A, Merino, MC, Coy, AE, Viejo, F, Arrabal, R, "Correlation Between the Surface Chemistry and the Atmospheric Corrosion of AZ31, AZ80 and AZ91D Magnesium Alloys." Appl. Surf. Sci., 255 4102–4108 (2009)CrossRef Feliu, S, Pardo, A, Merino, MC, Coy, AE, Viejo, F, Arrabal, R, "Correlation Between the Surface Chemistry and the Atmospheric Corrosion of AZ31, AZ80 and AZ91D Magnesium Alloys." Appl. Surf. Sci., 255 4102–4108 (2009)CrossRef
34.
go back to reference Li, M, Boggs, M, Beebe, TP, Huang, CP, "Oxidation of Single-Walled Carbon Nanotubes in Dilute Aqueous Solutions by Ozone as Affected by Ultrasound." Carbon, 46 466–475 (2008)CrossRef Li, M, Boggs, M, Beebe, TP, Huang, CP, "Oxidation of Single-Walled Carbon Nanotubes in Dilute Aqueous Solutions by Ozone as Affected by Ultrasound." Carbon, 46 466–475 (2008)CrossRef
35.
go back to reference Wu, L, Zhao, L, Dong, J, Ke, W, Chen, N, "Potentiostatic Conversion of Phosphate Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K2HPO4 Solution." Electrochim. Acta, 145 71–80 (2014)CrossRef Wu, L, Zhao, L, Dong, J, Ke, W, Chen, N, "Potentiostatic Conversion of Phosphate Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K2HPO4 Solution." Electrochim. Acta, 145 71–80 (2014)CrossRef
36.
go back to reference Purcell, KG, Jupille, J, King, DA, " Coordination Number and Surface Core-Level Shift Spectroscopy: Stepped Tungsten Surfaces." Surf. Sci., 208 245–266 (1989)CrossRef Purcell, KG, Jupille, J, King, DA, " Coordination Number and Surface Core-Level Shift Spectroscopy: Stepped Tungsten Surfaces." Surf. Sci., 208 245–266 (1989)CrossRef
37.
go back to reference Egelhoff, WF, "Core-Level Binding-Energy Shifts at Surfaces and in Solids." Surf. Sci. Rep. 6 253–415 (1987)CrossRef Egelhoff, WF, "Core-Level Binding-Energy Shifts at Surfaces and in Solids." Surf. Sci. Rep. 6 253–415 (1987)CrossRef
38.
go back to reference Fournier, V, Marcus, P, Olefjord, I, "Oxidation of Magnesium." Surf. Interface Anal., 34 494–497 (2002)CrossRef Fournier, V, Marcus, P, Olefjord, I, "Oxidation of Magnesium." Surf. Interface Anal., 34 494–497 (2002)CrossRef
39.
go back to reference Rouxhet, PG, Genet, MJ, "XPS Analysis of Bio-Organic Systems." Surf. Interface Anal., 43 1453–1470 (2011)CrossRef Rouxhet, PG, Genet, MJ, "XPS Analysis of Bio-Organic Systems." Surf. Interface Anal., 43 1453–1470 (2011)CrossRef
40.
go back to reference Hench, LL, Wilson, J, "Surface Active Biomaterials." Science, 208 826–31 (1980)CrossRef Hench, LL, Wilson, J, "Surface Active Biomaterials." Science, 208 826–31 (1980)CrossRef
41.
go back to reference Fernández, E, Gil, FJ , Ginebra, MP, Driessens, FCM, Planell, JA, Best, SM, "Calcium Phosphate Bone Cements for Clinical Applications. Part I: Solution Chemistry." J. Mater. Sci. Mater. Med., 10 169–176 (1999)CrossRef Fernández, E, Gil, FJ , Ginebra, MP, Driessens, FCM, Planell, JA, Best, SM, "Calcium Phosphate Bone Cements for Clinical Applications. Part I: Solution Chemistry." J. Mater. Sci. Mater. Med., 10 169–176 (1999)CrossRef
42.
go back to reference Bayraktar, D, Tas, AC, "Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37°C in Urea-Containing Synthetic Body Fluids." J. Eur. Ceram. Soc., 19 2573–2579 (1999)CrossRef Bayraktar, D, Tas, AC, "Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37°C in Urea-Containing Synthetic Body Fluids." J. Eur. Ceram. Soc., 19 2573–2579 (1999)CrossRef
43.
go back to reference Chow, LC, Takagi, S, Shern, RJ, Chow, TH, Takagi, KK, Sieck, BA, "Effects on Whole Saliva of Chewing Gums Containing Calcium Phosphates." J. Dent. Res., 73 26–32 (1994)CrossRef Chow, LC, Takagi, S, Shern, RJ, Chow, TH, Takagi, KK, Sieck, BA, "Effects on Whole Saliva of Chewing Gums Containing Calcium Phosphates." J. Dent. Res., 73 26–32 (1994)CrossRef
44.
go back to reference Cheng, J, Fernando, KAS, Veca, LM, Sun, YP, Lamond, AI, Lam, YW, Cheng, SH, "Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus." ACS Nano., 2 2085–2094 (2008)CrossRef Cheng, J, Fernando, KAS, Veca, LM, Sun, YP, Lamond, AI, Lam, YW, Cheng, SH, "Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus." ACS Nano., 2 2085–2094 (2008)CrossRef
46.
go back to reference Toita, S, Kang, D, Kobayashi, K, Kawamoto, H, Kojima, K, Tachibana, M, "Atomic Force Microscopic Study on DNA-Wrapping for Different Diameter Single-Wall Carbon Nanotubes." Diam. Relat. Mater., 17 1389–1393 (2008)CrossRef Toita, S, Kang, D, Kobayashi, K, Kawamoto, H, Kojima, K, Tachibana, M, "Atomic Force Microscopic Study on DNA-Wrapping for Different Diameter Single-Wall Carbon Nanotubes." Diam. Relat. Mater., 17 1389–1393 (2008)CrossRef
47.
go back to reference Cheung, W, Pontoriero, F, Taratula, O, Chen, AM, He, H, "DNA and Carbon Nanotubes as Medicine." Adv. Drug Deliv. Rev., 62 633–649 (2010)CrossRef Cheung, W, Pontoriero, F, Taratula, O, Chen, AM, He, H, "DNA and Carbon Nanotubes as Medicine." Adv. Drug Deliv. Rev., 62 633–649 (2010)CrossRef
48.
go back to reference Piovesan, S, Cox, PA, Smith, JR, Fatouros, DG, Roldo, M, "Novel Biocompatible Chitosan Decorated Single-Walled Carbon Nanotubes (SWNTs) for Biomedical Applications: Theoretical and Experimental Investigations." Phys. Chem. Chem. Phys., 12 15636 (2010)CrossRef Piovesan, S, Cox, PA, Smith, JR, Fatouros, DG, Roldo, M, "Novel Biocompatible Chitosan Decorated Single-Walled Carbon Nanotubes (SWNTs) for Biomedical Applications: Theoretical and Experimental Investigations." Phys. Chem. Chem. Phys., 12 15636 (2010)CrossRef
49.
go back to reference Panchakarla, LS, Govindaraj, A, "Covalent and Non-Covalent Functionalization and Solubilization of Double-Walled Carbon Nanotubes in Nonpolar and Aqueous Media." J. Chem. Sci., 120 607–611 (2008)CrossRef Panchakarla, LS, Govindaraj, A, "Covalent and Non-Covalent Functionalization and Solubilization of Double-Walled Carbon Nanotubes in Nonpolar and Aqueous Media." J. Chem. Sci., 120 607–611 (2008)CrossRef
50.
go back to reference Varma, A, Deshpande, S, Kennedy, J, "Metal Complexation by Chitosan and Its Derivatives: A Review." Carbohydr. Polym., 55 77–93 (2004)CrossRef Varma, A, Deshpande, S, Kennedy, J, "Metal Complexation by Chitosan and Its Derivatives: A Review." Carbohydr. Polym., 55 77–93 (2004)CrossRef
51.
go back to reference Fadeeva, I, Barinov, S, Fedotov, AY, Komlev, V, "Interactions of Calcium Phosphates with Chitosan." Doklady Chemistry, Springer, pp 387-390. (2011) Fadeeva, I, Barinov, S, Fedotov, AY, Komlev, V, "Interactions of Calcium Phosphates with Chitosan." Doklady Chemistry, Springer, pp 387-390. (2011)
52.
go back to reference Nilsen-Nygaard, J, Strand, S, Vårum, K, Draget, K, Nordgård, C, "Chitosan: Gels and Interfacial Properties." Polymers, 7 552–579 (2015)CrossRef Nilsen-Nygaard, J, Strand, S, Vårum, K, Draget, K, Nordgård, C, "Chitosan: Gels and Interfacial Properties." Polymers, 7 552–579 (2015)CrossRef
53.
go back to reference Zhou, S, Chen, H, Ding, C, Niu, H, Zhang, T, Wang, N, Zhang, Q, Liu, D, Han, S, Yu, H, "Effectiveness of Crystallitic Carbon from Coal as Milling Aid and for Hydrogen Storage During Milling with Magnesium." Fuel, 109 68–75 (2013)CrossRef Zhou, S, Chen, H, Ding, C, Niu, H, Zhang, T, Wang, N, Zhang, Q, Liu, D, Han, S, Yu, H, "Effectiveness of Crystallitic Carbon from Coal as Milling Aid and for Hydrogen Storage During Milling with Magnesium." Fuel, 109 68–75 (2013)CrossRef
54.
go back to reference Moulton, SE, Minett, AI, Murphy, R, Ryan, KP, McCarthy, D, Coleman, JN, Blau, WJ, Wallace, GG, "Biomolecules as Selective Dispersants for Carbon Nanotubes." Carbon, 43 1879–1884 (2005)CrossRef Moulton, SE, Minett, AI, Murphy, R, Ryan, KP, McCarthy, D, Coleman, JN, Blau, WJ, Wallace, GG, "Biomolecules as Selective Dispersants for Carbon Nanotubes." Carbon, 43 1879–1884 (2005)CrossRef
55.
go back to reference Spinks, GM, Shin, SR, Wallace, GG, Whitten, PG, Kim, SI, Kim, SJ, "Mechanical Propertes of Chitosan/CNT Microfibers Obtained with Improved Dispersion." Sensors Actuators B Chem., 115 678–684 (2006)CrossRef Spinks, GM, Shin, SR, Wallace, GG, Whitten, PG, Kim, SI, Kim, SJ, "Mechanical Propertes of Chitosan/CNT Microfibers Obtained with Improved Dispersion." Sensors Actuators B Chem., 115 678–684 (2006)CrossRef
56.
go back to reference Chui, VWD, Mok, KW, Ng, CY, Luong, BP, Ma, KK, "Removal and Recovery of Copper(II), Chromium(III), and Nickel(II) from Solutions Using Crude Shrimp Chitin Packed in Small Columns." Environ. Int., 22 463–468 (1996)CrossRef Chui, VWD, Mok, KW, Ng, CY, Luong, BP, Ma, KK, "Removal and Recovery of Copper(II), Chromium(III), and Nickel(II) from Solutions Using Crude Shrimp Chitin Packed in Small Columns." Environ. Int., 22 463–468 (1996)CrossRef
57.
go back to reference Hon, DNS, Tang, LG, "Chelation of Chitosan Derivatives with Zinc Ions. I. O,N-carboxymethyl Chitosan." J. Appl. Polym. Sci., 77 2246–2253 (2000)CrossRef Hon, DNS, Tang, LG, "Chelation of Chitosan Derivatives with Zinc Ions. I. O,N-carboxymethyl Chitosan." J. Appl. Polym. Sci., 77 2246–2253 (2000)CrossRef
58.
go back to reference Rhazi, M, Desbrières, J, Tolaimate, A, Rinaudo, M, Vottero, P, Alagui, A, "Contribution to the Study of the Complexation of Copper by Chitosan and Oligomers." Polymer, 43 1267–1276 (2002)CrossRef Rhazi, M, Desbrières, J, Tolaimate, A, Rinaudo, M, Vottero, P, Alagui, A, "Contribution to the Study of the Complexation of Copper by Chitosan and Oligomers." Polymer, 43 1267–1276 (2002)CrossRef
59.
go back to reference Odunola, OA, "Spectroscopic and Magnetic Properties of Zn(II), Cd(II) and Hg(II) Carboxylates." Synth. React. Inorg. Met. Chem., 23 1241–1249 (1993)CrossRef Odunola, OA, "Spectroscopic and Magnetic Properties of Zn(II), Cd(II) and Hg(II) Carboxylates." Synth. React. Inorg. Met. Chem., 23 1241–1249 (1993)CrossRef
60.
go back to reference Lau, C, Cooney, MJ, Atanassov, P, "Conductive Macroporous Composite Chitosan−Carbon Nanotube Scaffolds." Langmuir, 24 7004–7010 (2008)CrossRef Lau, C, Cooney, MJ, Atanassov, P, "Conductive Macroporous Composite Chitosan−Carbon Nanotube Scaffolds." Langmuir, 24 7004–7010 (2008)CrossRef
61.
go back to reference Lebugle, A, Sallek, B, Tai Tai, A, "Surface Modification of Monetite in Water at 37 °C: Characterisation by XPS." J. Mater. Chem., 9 2511–2515 (1999)CrossRef Lebugle, A, Sallek, B, Tai Tai, A, "Surface Modification of Monetite in Water at 37 °C: Characterisation by XPS." J. Mater. Chem., 9 2511–2515 (1999)CrossRef
62.
go back to reference Sutter, JR, McDowell, H, Brown, WE, "Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation." Inorg. Chem., 10 1638–1643 (1971)CrossRef Sutter, JR, McDowell, H, Brown, WE, "Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation." Inorg. Chem., 10 1638–1643 (1971)CrossRef
63.
go back to reference Pawlak, A, Mucha, M, "Thermogravimetric and FTIR Studies of Chitosan Blends." Thermochim. Acta, 396 153–166 (2003)CrossRef Pawlak, A, Mucha, M, "Thermogravimetric and FTIR Studies of Chitosan Blends." Thermochim. Acta, 396 153–166 (2003)CrossRef
64.
go back to reference Kweon, H, Um, IC, Park, YH, "Structural and Thermal Characteristics of Antheraea Pernyi Silk Fibroin/Chitosan Blend Film." Polymer, 42 6651–6656 (2001)CrossRef Kweon, H, Um, IC, Park, YH, "Structural and Thermal Characteristics of Antheraea Pernyi Silk Fibroin/Chitosan Blend Film." Polymer, 42 6651–6656 (2001)CrossRef
65.
go back to reference Ahlswede, B, Homann, T, Jug, K, "MSINDO Study of the Adsorption of Water Molecules at Defective MgO(100) Surfaces." Surf. Sci., 445 49–59 (2000)CrossRef Ahlswede, B, Homann, T, Jug, K, "MSINDO Study of the Adsorption of Water Molecules at Defective MgO(100) Surfaces." Surf. Sci., 445 49–59 (2000)CrossRef
66.
go back to reference Cho, JH, Park, JM, Kim, KS, "Influence of Intermolecular Hydrogen Bonding on Water Dissociation at the MgO(001) Surface." Phys. Rev. B., 62 9981–9984 (2000)CrossRef Cho, JH, Park, JM, Kim, KS, "Influence of Intermolecular Hydrogen Bonding on Water Dissociation at the MgO(001) Surface." Phys. Rev. B., 62 9981–9984 (2000)CrossRef
67.
go back to reference Labajos, FM, Rives, V, Ulibarri, MA, "Effect of Hydrothermal and Thermal Treatments on the Physicochemical Properties of Mg-Al Hydrotalcite-Like Materials." J. Mater. Sci., 27 1546–1552 (1992)CrossRef Labajos, FM, Rives, V, Ulibarri, MA, "Effect of Hydrothermal and Thermal Treatments on the Physicochemical Properties of Mg-Al Hydrotalcite-Like Materials." J. Mater. Sci., 27 1546–1552 (1992)CrossRef
68.
go back to reference Nyquist, RA, Kagel, RO, "Infrared Spectra of Inorganic Compounds (3800-45cm)." Academic Press, New York (1971) Nyquist, RA, Kagel, RO, "Infrared Spectra of Inorganic Compounds (3800-45cm)." Academic Press, New York (1971)
69.
go back to reference Müller, L, Müller, FA, "Preparation of SBF with Different HCO3– Content and Its Influence on the Composition of Biomimetic Apatites." Acta Biomater., 2 181–189 (2006)CrossRef Müller, L, Müller, FA, "Preparation of SBF with Different HCO3 Content and Its Influence on the Composition of Biomimetic Apatites." Acta Biomater., 2 181–189 (2006)CrossRef
70.
go back to reference Wen, C, Guan, S, Peng, L, Ren, C, Wang, X, Hu, Z, "Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications." Appl. Surf. Sci., 255 6433–6438 (2009)CrossRef Wen, C, Guan, S, Peng, L, Ren, C, Wang, X, Hu, Z, "Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications." Appl. Surf. Sci., 255 6433–6438 (2009)CrossRef
71.
go back to reference Murugan, R, Ramakrishna, S, "Bioresorbable Composite Bone Paste Using Polysaccharide Based Nano Hydroxyapatite." Biomaterials, 25 3829–3835 (2004)CrossRef Murugan, R, Ramakrishna, S, "Bioresorbable Composite Bone Paste Using Polysaccharide Based Nano Hydroxyapatite." Biomaterials, 25 3829–3835 (2004)CrossRef
72.
go back to reference Li, Z, Yubao, L, Aiping, Y, Xuelin, P, Xuejiang, W, Xiang, Z, "Preparation and In Vitro Investigation of Chitosan/Nano-Hydroxyapatite Composite Used as Bone Substitute Materials." J. Mater. Sci. Mater. Med., 16 213–219 (2005)CrossRef Li, Z, Yubao, L, Aiping, Y, Xuelin, P, Xuejiang, W, Xiang, Z, "Preparation and In Vitro Investigation of Chitosan/Nano-Hydroxyapatite Composite Used as Bone Substitute Materials." J. Mater. Sci. Mater. Med., 16 213–219 (2005)CrossRef
73.
go back to reference Gao, JH, Guan, SK, Chen, J, Wang, LG, Zhu, SJ, Hu, JH, Ren, ZW, "Fabrication and Characterization of Rod-like Nano-Hydroxyapatite on MAO Coating Supported on Mg–Zn–Ca Alloy." Appl. Surf. Sci., 257 2231–2237 (2011)CrossRef Gao, JH, Guan, SK, Chen, J, Wang, LG, Zhu, SJ, Hu, JH, Ren, ZW, "Fabrication and Characterization of Rod-like Nano-Hydroxyapatite on MAO Coating Supported on Mg–Zn–Ca Alloy." Appl. Surf. Sci., 257 2231–2237 (2011)CrossRef
74.
go back to reference Zhang, L, Liu, W, Yue, C, Zhang, T, Li, P, Xing, Z, Chen, Y, "A Tough Graphene Nanosheet/Hydroxyapatite Composite with Improved In Vitro Biocompatibility." Carbon, 61 105–115 (2013)CrossRef Zhang, L, Liu, W, Yue, C, Zhang, T, Li, P, Xing, Z, Chen, Y, "A Tough Graphene Nanosheet/Hydroxyapatite Composite with Improved In Vitro Biocompatibility." Carbon, 61 105–115 (2013)CrossRef
75.
go back to reference Zhang, J, "In Vitro Bioactivity, Degradation Property and Cell Viability of the CaP/Chitosan/Graphene Coating on Magnesium Alloy in m-SBF." Int. J. Electrochem. Sci., 11 9326–9339 (2016)CrossRef Zhang, J, "In Vitro Bioactivity, Degradation Property and Cell Viability of the CaP/Chitosan/Graphene Coating on Magnesium Alloy in m-SBF." Int. J. Electrochem. Sci., 11 9326–9339 (2016)CrossRef
76.
go back to reference Rath, PC, Singh, BP, Besra, L, Bhattacharjee, S, "Multiwalled Carbon Nanotubes Reinforced Hydroxyapatite-Chitosan Composite Coating on Ti Metal: Corrosion and Mechanical Properties." J. Am. Ceram. Soc., 95 2725–2731 (2012)CrossRef Rath, PC, Singh, BP, Besra, L, Bhattacharjee, S, "Multiwalled Carbon Nanotubes Reinforced Hydroxyapatite-Chitosan Composite Coating on Ti Metal: Corrosion and Mechanical Properties." J. Am. Ceram. Soc., 95 2725–2731 (2012)CrossRef
77.
go back to reference Shi, YY, Li, M, Liu, Q, Jia, ZJ, Xu, XC, Cheng, Y, Zheng, YF, "Electrophoretic Deposition of Graphene Oxide Reinforced Chitosan–Hydroxyapatite Nanocomposite Coatings on Ti Substrate." J. Mater. Sci. Mater. Med., 27 48-60 (2016)CrossRef Shi, YY, Li, M, Liu, Q, Jia, ZJ, Xu, XC, Cheng, Y, Zheng, YF, "Electrophoretic Deposition of Graphene Oxide Reinforced Chitosan–Hydroxyapatite Nanocomposite Coatings on Ti Substrate." J. Mater. Sci. Mater. Med., 27 48-60 (2016)CrossRef
78.
go back to reference Shimizu, M, Kobayashi, Y, Mizoguchi, T, Nakamura, H, Kawahara, I, Narita, N, Usui, Y, Aoki, K, Hara, K, Haniu, H, Ogihara, N, Ishigaki, N, Nakamura, K, Kato, H, Kawakubo, M, Dohi, Y, Taruta, S, Kim, YA, Endo, M, Ozawa, H, Udagawa, N, Takahashi, N, Saito, N, "Carbon Nanotubes Induce Bone Calcification by Bidirectional Inteaction with Osteoblasts." Adv. Mater., 24 2176–2185 (2012)CrossRef Shimizu, M, Kobayashi, Y, Mizoguchi, T, Nakamura, H, Kawahara, I, Narita, N, Usui, Y, Aoki, K, Hara, K, Haniu, H, Ogihara, N, Ishigaki, N, Nakamura, K, Kato, H, Kawakubo, M, Dohi, Y, Taruta, S, Kim, YA, Endo, M, Ozawa, H, Udagawa, N, Takahashi, N, Saito, N, "Carbon Nanotubes Induce Bone Calcification by Bidirectional Inteaction with Osteoblasts." Adv. Mater., 24 2176–2185 (2012)CrossRef
79.
go back to reference Isobe, H, Tanaka, T, Maeda, R, Noiri, E, Solin, N, Yudasaka, M, Iijima, S, Nakamura, E, "Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-Soluble, Transition-Metal-Free Carbon Nanotube Aggregates." Angew. Chem. Int. Ed., 45 6676–6680 (2006)CrossRef Isobe, H, Tanaka, T, Maeda, R, Noiri, E, Solin, N, Yudasaka, M, Iijima, S, Nakamura, E, "Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-Soluble, Transition-Metal-Free Carbon Nanotube Aggregates." Angew. Chem. Int. Ed., 45 6676–6680 (2006)CrossRef
80.
go back to reference Hanawa, T, Ota, M, "Characterization of Surface Film Formed on Titanium in Electrolyte Using XPS." Appl. Surf. Sci., 55 269–276 (1992)CrossRef Hanawa, T, Ota, M, "Characterization of Surface Film Formed on Titanium in Electrolyte Using XPS." Appl. Surf. Sci., 55 269–276 (1992)CrossRef
81.
go back to reference Li, P, Ohtsuki, C, Kokubo, T, Nakanishi, K, Soga, N, De Groot, K, "The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants." J. Biomed. Mater. Res., 28 7–15 (1994)CrossRef Li, P, Ohtsuki, C, Kokubo, T, Nakanishi, K, Soga, N, De Groot, K, "The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants." J. Biomed. Mater. Res., 28 7–15 (1994)CrossRef
82.
go back to reference Hahn, BD, Park, DS, Choi, JJ, Ryu, J, Yoon, WH, Choi, JH, Kim, HE, Kim, SG, "Aerosol Deposition of Hydroxyapatite–Chitosan Composite Coatings on Biodegradable Magnesium Alloy." Surf. Coatings Technol., 205 3112–3118 (2011)CrossRef Hahn, BD, Park, DS, Choi, JJ, Ryu, J, Yoon, WH, Choi, JH, Kim, HE, Kim, SG, "Aerosol Deposition of Hydroxyapatite–Chitosan Composite Coatings on Biodegradable Magnesium Alloy." Surf. Coatings Technol., 205 3112–3118 (2011)CrossRef
83.
go back to reference Dehghanian, C, Aboudzadeh, N, Shokrgozar, MA, "Characterization of Silicon-Substituted Nano Hydroxyapatite Coating on Magnesium Alloy for Biomaterial Application." Mater. Chem. Phys., 203 27–33 (2018)CrossRef Dehghanian, C, Aboudzadeh, N, Shokrgozar, MA, "Characterization of Silicon-Substituted Nano Hydroxyapatite Coating on Magnesium Alloy for Biomaterial Application." Mater. Chem. Phys., 203 27–33 (2018)CrossRef
84.
go back to reference Dunne, CF, Levy, GK, Hakimi, O, Aghion, E, Twomey, B, Stanton, KT, "Corrosion Behaviour of Biodegradable Magnesium Alloys with Hydroxyapatite Coatings." Surf. Coatings Technol., 289 37–44 (2016)CrossRef Dunne, CF, Levy, GK, Hakimi, O, Aghion, E, Twomey, B, Stanton, KT, "Corrosion Behaviour of Biodegradable Magnesium Alloys with Hydroxyapatite Coatings." Surf. Coatings Technol., 289 37–44 (2016)CrossRef
85.
go back to reference Jayaraj, J, Amruth Raj, S, Srinivasan, A, Ananthakumar, S, Pillai, UTS, Dhaipule, NGK, Mudali, UK, "Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy." Corros. Sci., 113 104–115 (2016)CrossRef Jayaraj, J, Amruth Raj, S, Srinivasan, A, Ananthakumar, S, Pillai, UTS, Dhaipule, NGK, Mudali, UK, "Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy." Corros. Sci., 113 104–115 (2016)CrossRef
86.
go back to reference Wen, C, Zhan, X, Huang, X, Xu, F, Luo, L, Xia, C, "Characterization and Corrosion Properties of Hydroxyapatite/Graphene Oxide Bio-composite Coating on Magnesium Alloy by One-step Micro-Arc Oxidation Method." Surf. Coatings Technol., 317 125–133 (2017)CrossRef Wen, C, Zhan, X, Huang, X, Xu, F, Luo, L, Xia, C, "Characterization and Corrosion Properties of Hydroxyapatite/Graphene Oxide Bio-composite Coating on Magnesium Alloy by One-step Micro-Arc Oxidation Method." Surf. Coatings Technol., 317 125–133 (2017)CrossRef
87.
go back to reference Bai, K, Zhang, Y, Fu, Z, Zhang, C, Cui, X, Meng, E, Guan, S, Hu, J, "Fabrication of Chitosan/Magnesium Phosphate Composite Coating and the In Vitro Degradation Properties of Coated Magnesium Alloy." Mater. Lett., 73 59–61 (2012)CrossRef Bai, K, Zhang, Y, Fu, Z, Zhang, C, Cui, X, Meng, E, Guan, S, Hu, J, "Fabrication of Chitosan/Magnesium Phosphate Composite Coating and the In Vitro Degradation Properties of Coated Magnesium Alloy." Mater. Lett., 73 59–61 (2012)CrossRef
88.
go back to reference Kannan, MB, Walter, R, Yamamoto, A, "Biocompatibility and in Vitro Degradation Behavior of Magnesium–Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte." ACS Biomater. Sci. Eng., 2 56–64 (2016)CrossRef Kannan, MB, Walter, R, Yamamoto, A, "Biocompatibility and in Vitro Degradation Behavior of Magnesium–Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte." ACS Biomater. Sci. Eng., 2 56–64 (2016)CrossRef
89.
go back to reference Bakhsheshi-Rad, HR, Hamzah, E, Kasiri-Asgarani, M, Jabbarzare, S, Iqbal, N, Abdul Kadir, MR, "Deposition of Nanostructured Fluorine-Doped Hydroxyapatite–Polycaprolactone Duplex Coating to Enhance the Mechanical Properties and Corrosion Resistance of Mg Alloy for Biomedical Applications." Mater. Sci. Eng. C, 60 526–537. (2016)CrossRef Bakhsheshi-Rad, HR, Hamzah, E, Kasiri-Asgarani, M, Jabbarzare, S, Iqbal, N, Abdul Kadir, MR, "Deposition of Nanostructured Fluorine-Doped Hydroxyapatite–Polycaprolactone Duplex Coating to Enhance the Mechanical Properties and Corrosion Resistance of Mg Alloy for Biomedical Applications." Mater. Sci. Eng. C, 60 526–537. (2016)CrossRef
90.
go back to reference Zeng, RC, Cui, L, Jiang, K, Liu, R, Zhao, BD, Zheng YF, "In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants." ACS Appl. Mater. Interfaces, 8 10014–10028 (2016)CrossRef Zeng, RC, Cui, L, Jiang, K, Liu, R, Zhao, BD, Zheng YF, "In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants." ACS Appl. Mater. Interfaces, 8 10014–10028 (2016)CrossRef
91.
go back to reference Yu, C, Cui, LY, Zhou, YF, Han, ZZ, Chen, XB, Zeng, RC, Zou, YH, Li, SQ, Zhang, F, Han, EH, Guan, SK, "Self-Degradation of Micro-arc Oxidation/Chitosan Composite Coating on Mg-4Li-1Ca Alloy." Surf. Coatings Technol., 344 1–11 (2018)CrossRef Yu, C, Cui, LY, Zhou, YF, Han, ZZ, Chen, XB, Zeng, RC, Zou, YH, Li, SQ, Zhang, F, Han, EH, Guan, SK, "Self-Degradation of Micro-arc Oxidation/Chitosan Composite Coating on Mg-4Li-1Ca Alloy." Surf. Coatings Technol., 344 1–11 (2018)CrossRef
92.
go back to reference Pan, J, Liao, H, Leygraf, C, Thierry, D, Li, J, "Variation of Oxide Films on Titanium Induced by Osteoblast-Like Cell Culture and the Influence of an H2O2 Pretreatment." J. Biomed. Mater. Res., 40 244–256 (1998)CrossRef Pan, J, Liao, H, Leygraf, C, Thierry, D, Li, J, "Variation of Oxide Films on Titanium Induced by Osteoblast-Like Cell Culture and the Influence of an H2O2 Pretreatment." J. Biomed. Mater. Res., 40 244–256 (1998)CrossRef
93.
go back to reference Raju, GG, Dielectrics in Electric Fields: Tables, Atoms, and Molecules. 2nd Edition. CRC Press, Taylor and Francis Group, 776 pages. (2016) Raju, GG, Dielectrics in Electric Fields: Tables, Atoms, and Molecules. 2nd Edition. CRC Press, Taylor and Francis Group, 776 pages. (2016)
94.
go back to reference Francis, A, "Progress in Polymer-Derived Functional Silicon-Based Ceramic Composites for Biomedical and Engineering Applications." Mater. Res. Express, 5 062003 (2018)CrossRef Francis, A, "Progress in Polymer-Derived Functional Silicon-Based Ceramic Composites for Biomedical and Engineering Applications." Mater. Res. Express, 5 062003 (2018)CrossRef
95.
go back to reference Rogero, SO, Sousa, JS, Alário, D, Lopérgolo, L, Lugão, AB, "Silicone Crosslinked by Ionizing Radiation as Potential Polymeric Matrix for Drug Delivery." Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 236 521–525 (2005) Rogero, SO, Sousa, JS, Alário, D, Lopérgolo, L, Lugão, AB, "Silicone Crosslinked by Ionizing Radiation as Potential Polymeric Matrix for Drug Delivery." Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 236 521–525 (2005)
96.
go back to reference Francis, A, Detsch, R, Boccaccini, AR, "Fabrication and Cytotoxicity Assessment of Novel Polysiloxane/Bioactive Glass Films for Biomedical Applications." Ceram. Int., 42 15442–15448 (2016)CrossRef Francis, A, Detsch, R, Boccaccini, AR, "Fabrication and Cytotoxicity Assessment of Novel Polysiloxane/Bioactive Glass Films for Biomedical Applications." Ceram. Int., 42 15442–15448 (2016)CrossRef
Metadata
Title
Toward CNT-reinforced chitosan-based ceramic composite coatings on biodegradable magnesium for surgical implants
Authors
A. A. Francis
S. A. Abdel-Gawad
M. A. Shoeib
Publication date
07-04-2021
Publisher
Springer US
Published in
Journal of Coatings Technology and Research / Issue 4/2021
Print ISSN: 1547-0091
Electronic ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-021-00468-y

Other articles of this Issue 4/2021

Journal of Coatings Technology and Research 4/2021 Go to the issue

Premium Partners