Skip to main content
Top
Published in:

01-12-2016 | Original Article

Toward early and order-of-magnitude cascade prediction in social networks

Authors: Ruocheng Guo, Elham Shaabani, Abhinav Bhatnagar, Paulo Shakarian

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When a piece of information (microblog, photograph, video, link, etc.) starts to spread in a social network, an important question arises: will it spread to “viral” proportions—where “viral” can be defined as an order-of-magnitude increase. However, several previous studies have established that cascade size and frequency are related through a power law—which leads to a severe imbalance in this classification problem. In this paper, we devise a suite of measurements based on “structural diversity”—the variety of social contexts (communities) in which individuals partaking in a given cascade engage. We demonstrate these measures are able to distinguish viral from non-viral cascades, despite the severe imbalance of the data for this problem. Further, we leverage these measurements as features in a classification approach, successfully predicting microblogs that grow from 50 to 500 reposts with precision of 0.69 and recall of 0.52 for the viral class—despite this class comprising under 2 % of samples. This significantly outperforms our baseline approach as well as the current state of the art. We also show this approach also performs well for identifying whether cascades observed for 60 min will grow to 500 reposts as well as demonstrate how we can trade-off between precision and recall.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
3
This was their highest-performing set of features for predicting cascades that grew from 50 to 367 and 100 to 417 reposts. We also included the baseline feature in this set as we found it improved the effectiveness of this approach.
 
Literature
go back to reference Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on web search and data mining, WSDM ’11. ACM, New York, NY, USA, pp 65–74. doi:10.1145/1935826.1935845 Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on web search and data mining, WSDM ’11. ACM, New York, NY, USA, pp 65–74. doi:10.​1145/​1935826.​1935845
go back to reference Bao P, Shen HW, Chen W, Cheng XQ (2013a) Cumulative effect in information diffusion: empirical study on a microblogging network. PloS One 8(10):e76,027CrossRef Bao P, Shen HW, Chen W, Cheng XQ (2013a) Cumulative effect in information diffusion: empirical study on a microblogging network. PloS One 8(10):e76,027CrossRef
go back to reference Bao Q, Cheung WK, Zhang Y (2013b) Incorporating structural diversity of neighbors in a diffusion model for social networks. In: 2013 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), vol 1. IEEE, pp 431–438 Bao Q, Cheung WK, Zhang Y (2013b) Incorporating structural diversity of neighbors in a diffusion model for social networks. In: 2013 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), vol 1. IEEE, pp 431–438
go back to reference Bian J, Yang Y, Chua TS (2014) Predicting trending messages and diffusion participants in microblogging network. In: Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval. ACM, pp 537–546 Bian J, Yang Y, Chua TS (2014) Predicting trending messages and diffusion participants in microblogging network. In: Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval. ACM, pp 537–546
go back to reference Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10,008CrossRef Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10,008CrossRef
go back to reference Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca RatonMATH Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca RatonMATH
go back to reference Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357MATH Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357MATH
go back to reference Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the 23rd international conference on world wide web, International World Wide Web Conferences Steering Committee, pp 925–936 Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the 23rd international conference on world wide web, International World Wide Web Conferences Steering Committee, pp 925–936
go back to reference Gallos L, Havlin S, Kitsak M, Liljeros F, Makse H, Muchnik L, Stanley H (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef Gallos L, Havlin S, Kitsak M, Liljeros F, Makse H, Muchnik L, Stanley H (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef
go back to reference Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W (2010) Outtweeting the twitterers-predicting information cascades in microblogs. In: Proceedings of the 3rd conference on online social networks, vol 39, p 3âAS3 Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W (2010) Outtweeting the twitterers-predicting information cascades in microblogs. In: Proceedings of the 3rd conference on online social networks, vol 39, p 3âAS3
go back to reference Grabowicz PA, Ramasco JJ, Moro E, Pujol JM, Eguiluz VM et al (2012) Social features of online networks: the strength of intermediary ties in online social media. PloS One 7(1):e29,358CrossRef Grabowicz PA, Ramasco JJ, Moro E, Pujol JM, Eguiluz VM et al (2012) Social features of online networks: the strength of intermediary ties in online social media. PloS One 7(1):e29,358CrossRef
go back to reference Guo R, Shaabani E, Bhatnagar A, Shakarian P (2015) Toward order-of-magnitude cascade prediction. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 1610–1613 Guo R, Shaabani E, Bhatnagar A, Shakarian P (2015) Toward order-of-magnitude cascade prediction. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 1610–1613
go back to reference Gupta M, Gao J, Zhai C, Han J (2012) Predicting future popularity trend of events in microblogging platforms. Proc Am Soc Inf Sci Technol 49(1):1–10CrossRef Gupta M, Gao J, Zhai C, Han J (2012) Predicting future popularity trend of events in microblogging platforms. Proc Am Soc Inf Sci Technol 49(1):1–10CrossRef
go back to reference Huang X, Cheng H, Li RH, Qin L, Yu JX (2013) Top-k structural diversity search in large networks. Proc VLDB Endow 6(13):1618–1629CrossRef Huang X, Cheng H, Li RH, Qin L, Yu JX (2013) Top-k structural diversity search in large networks. Proc VLDB Endow 6(13):1618–1629CrossRef
go back to reference Jenders M, Kasneci G, Naumann F (2013) Analyzing and predicting viral tweets. In: Proceedings of the 22nd international conference on world wide web companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’13 Companion, pp 657–664, http://dl.acm.org/citation.cfm?id=2487788.2488017 Jenders M, Kasneci G, Naumann F (2013) Analyzing and predicting viral tweets. In: Proceedings of the 22nd international conference on world wide web companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’13 Companion, pp 657–664, http://​dl.​acm.​org/​citation.​cfm?​id=​2487788.​2488017
go back to reference Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’03). ACM, New York, NY, USA, pp 137–146. doi:10.1145/956750.956769 Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’03). ACM, New York, NY, USA, pp 137–146. doi:10.​1145/​956750.​956769
go back to reference Li RH, Qin L, Yu JX, Mao R (2015) Influential community search in large networks. Proc VLDB Endow 8(5):509–520CrossRef Li RH, Qin L, Yu JX, Mao R (2015) Influential community search in large networks. Proc VLDB Endow 8(5):509–520CrossRef
go back to reference Pei S, Muchnik L, Andrade JS Jr, Zheng Z, Makse HA (2014) Searching for superspreaders of information in real-world social media. Sci Rep 4:5547 Pei S, Muchnik L, Andrade JS Jr, Zheng Z, Makse HA (2014) Searching for superspreaders of information in real-world social media. Sci Rep 4:5547
go back to reference Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036,106CrossRef Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036,106CrossRef
go back to reference Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRef Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRef
go back to reference Shakarian P, Gerdes L, Lei H (2014) Circle-based tipping cascades in social networks. In: WSDM workshop on diffusion networks and cascade analytics Shakarian P, Gerdes L, Lei H (2014) Circle-based tipping cascades in social networks. In: WSDM workshop on diffusion networks and cascade analytics
go back to reference Shakarian P, Bhatnagar A, Aleali A, Guo R, Shaabani E (2015) Diffusion in social networks. Springer, BerlinCrossRefMATH Shakarian P, Bhatnagar A, Aleali A, Guo R, Shaabani E (2015) Diffusion in social networks. Springer, BerlinCrossRefMATH
go back to reference Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Proc Natl Acad Sci 109(16):5962–5966CrossRef Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Proc Natl Acad Sci 109(16):5962–5966CrossRef
go back to reference Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B 86(11):1–14MathSciNetCrossRef Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B 86(11):1–14MathSciNetCrossRef
go back to reference Weng L, Menczer F, Ahn YY (2014) Predicting successful memes using network and community structure. In: Eighth international AAAI conference on weblogs and social media Weng L, Menczer F, Ahn YY (2014) Predicting successful memes using network and community structure. In: Eighth international AAAI conference on weblogs and social media
go back to reference Zhang J, Liu B, Tang J, Chen T, Li J (2013) Social influence locality for modeling retweeting behaviors. In: Proceedings of the twenty-third international joint conference on artificial intelligence. AAAI Press, pp 2761–2767 Zhang J, Liu B, Tang J, Chen T, Li J (2013) Social influence locality for modeling retweeting behaviors. In: Proceedings of the twenty-third international joint conference on artificial intelligence. AAAI Press, pp 2761–2767
Metadata
Title
Toward early and order-of-magnitude cascade prediction in social networks
Authors
Ruocheng Guo
Elham Shaabani
Abhinav Bhatnagar
Paulo Shakarian
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0372-7

Premium Partner