Skip to main content
Top
Published in: Measurement Techniques 12/2018

12-03-2018

Towards a 229Th-Based Nuclear Clock

Authors: L. von der Wense, B. Seiferle, P. G. Thirolf

Published in: Measurement Techniques | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An overview of the current status of the development of a nuclear clock based on the state of lowest known nuclear excitation energy in 229Th is presented. The text is especially written for the interested reader without any particular knowledge in this field of research. It is thus ideal as an introductory reading to get a broad overview of the various different aspects of the field; in addition, it can serve as a guideline for future research. An introductory part is provided, giving a historic context and explaining the fundamental concept of clocks. Finally, potential candidates for nuclear clocks other than 229Th are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Higgins, D. Miner, C. N. Smith, and D. B. Sullivan, A Walk Through Time (version 1.2.1) (2004), National Institute of Standards and Technology, Gaithersburg, MD, http://physics.nist.gov/time, acc. July 12, 2010. K. Higgins, D. Miner, C. N. Smith, and D. B. Sullivan, A Walk Through Time (version 1.2.1) (2004), National Institute of Standards and Technology, Gaithersburg, MD, http://​physics.​nist.​gov/​time, acc. July 12, 2010.
3.
go back to reference F. Sorge, M. Cammalleri, and G. Genchi, “On the birth and growth of pendulum clocks in the early modern era,” in: Essays on the History of Mechanical Engineering, Springer (2016), pp. 273–290. F. Sorge, M. Cammalleri, and G. Genchi, “On the birth and growth of pendulum clocks in the early modern era,” in: Essays on the History of Mechanical Engineering, Springer (2016), pp. 273–290.
4.
go back to reference R. T. Gould, The Marine Chronometer: Its History and Development, J. D. Potter (1923). R. T. Gould, The Marine Chronometer: Its History and Development, J. D. Potter (1923).
6.
go back to reference W. A. Marrison, “The evolution of the quartz crystal clock,” Bell Syst. Techn. J., 27, 510–588 (1948).CrossRef W. A. Marrison, “The evolution of the quartz crystal clock,” Bell Syst. Techn. J., 27, 510–588 (1948).CrossRef
7.
go back to reference H. Lyons, “The atomic clock,” Instruments, 22, 133–135 (1949). H. Lyons, “The atomic clock,” Instruments, 22, 133–135 (1949).
8.
go back to reference P. Forman, Atomichron: The Atomic Clock from Concept to Commercial Product, IEEE Ultrasonics, Ferroelectrics and Frequency Control Society (1998). P. Forman, Atomichron: The Atomic Clock from Concept to Commercial Product, IEEE Ultrasonics, Ferroelectrics and Frequency Control Society (1998).
9.
go back to reference L. Essen and J. V. L. Parry, “An atomic standard of frequency and time interval: A cesium resonator,” Nature, 176, 280–282 (1955).ADSCrossRef L. Essen and J. V. L. Parry, “An atomic standard of frequency and time interval: A cesium resonator,” Nature, 176, 280–282 (1955).ADSCrossRef
10.
go back to reference N. F. Ramsey, “History of atomic clocks,” J. Res. Nat. Bur. Stand., 88, 301–318 (1983).CrossRef N. F. Ramsey, “History of atomic clocks,” J. Res. Nat. Bur. Stand., 88, 301–318 (1983).CrossRef
11.
go back to reference R. Wynands and S. Weyers, “Atomic fountain clocks,” Metrologica, 42, 64–79 (2005).ADSCrossRef R. Wynands and S. Weyers, “Atomic fountain clocks,” Metrologica, 42, 64–79 (2005).ADSCrossRef
12.
go back to reference Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).ADSCrossRef Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).ADSCrossRef
13.
go back to reference S. A. Diddams et al., “An optical clock based on a single trapped 199Hg+ ion,” Science, 293, 825–828 (2001).ADSCrossRef S. A. Diddams et al., “An optical clock based on a single trapped 199Hg+ ion,” Science, 293, 825–828 (2001).ADSCrossRef
14.
go back to reference T. Rosenband et al., “Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place,” Science, 319, 1808–1811 (2008).ADSCrossRef T. Rosenband et al., “Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th decimal place,” Science, 319, 1808–1811 (2008).ADSCrossRef
15.
go back to reference N. Huntemann et al., “Single-ion atomic clock with 3·10–18 systematic uncertainty,” Phys. Rev. Lett., 116, 063001 (2016).ADSCrossRef N. Huntemann et al., “Single-ion atomic clock with 3·10–18 systematic uncertainty,” Phys. Rev. Lett., 116, 063001 (2016).ADSCrossRef
16.
go back to reference B. J. Bloom et al., “An optical lattice clock with accuracy and stability at the 10–18 level,” Nature, 506, 71–75 (2014).ADSCrossRef B. J. Bloom et al., “An optical lattice clock with accuracy and stability at the 10–18 level,” Nature, 506, 71–75 (2014).ADSCrossRef
17.
go back to reference T. L. Nicholson et al., “Systematic evaluation of an atomic clock at 2·10–18 total uncertainty,” Nature, Communications (2015). T. L. Nicholson et al., “Systematic evaluation of an atomic clock at 2·10–18 total uncertainty,” Nature, Communications (2015).
18.
go back to reference A. D. Ludlow et al., “Optical atomic clocks,” Rev. Mod. Phys., 87, 637–699 (2015).ADSCrossRef A. D. Ludlow et al., “Optical atomic clocks,” Rev. Mod. Phys., 87, 637–699 (2015).ADSCrossRef
19.
go back to reference E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” Comptes Rendus Phys., 16, 516–523 (2015).CrossRef E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” Comptes Rendus Phys., 16, 516–523 (2015).CrossRef
20.
go back to reference L. A. Kroger and C. W. Reich, “Features of the low energy level scheme of 229Th as observed in the decay of 233U,” Nucl. Phys. A, 259, 29 (1976).ADSCrossRef L. A. Kroger and C. W. Reich, “Features of the low energy level scheme of 229Th as observed in the decay of 233U,” Nucl. Phys. A, 259, 29 (1976).ADSCrossRef
21.
go back to reference C. W. Reich and R. Helmer, “Energy separation of the doublet of intrinsic states at the ground state of 229Th,” Phys. Rev. Lett., 64, 271 (1990).ADSCrossRef C. W. Reich and R. Helmer, “Energy separation of the doublet of intrinsic states at the ground state of 229Th,” Phys. Rev. Lett., 64, 271 (1990).ADSCrossRef
22.
go back to reference R. Helmer and C. W. Reich, “An excited state of 229Th at 3.5 eV,” Phys. Rev. C, 49, 1845 (1994).ADSCrossRef R. Helmer and C. W. Reich, “An excited state of 229Th at 3.5 eV,” Phys. Rev. C, 49, 1845 (1994).ADSCrossRef
23.
go back to reference B. R. Beck et al., “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett., 109, 142501 (2007).ADSCrossRef B. R. Beck et al., “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett., 109, 142501 (2007).ADSCrossRef
24.
go back to reference B. R. Beck et al., “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” LLNLPROC-415170 (2009). B. R. Beck et al., “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” LLNLPROC-415170 (2009).
25.
go back to reference F. F. Karpeshin and M. B. Trzhaskovskaya, “Impact of the electron environment on the lifetime of the 229Th m low-lying isomer,” Phys. Rev. C, 76, 054313 (2007).ADSCrossRef F. F. Karpeshin and M. B. Trzhaskovskaya, “Impact of the electron environment on the lifetime of the 229Th m low-lying isomer,” Phys. Rev. C, 76, 054313 (2007).ADSCrossRef
27.
go back to reference O. V. Vorykhalov and V. V. Koltsov, “Search for an isomeric transition of energy below 5 eV in 229Th nucleus,” Bull. Russ. Acad. Sci.: Physics, 59, 20–24 (1995). O. V. Vorykhalov and V. V. Koltsov, “Search for an isomeric transition of energy below 5 eV in 229Th nucleus,” Bull. Russ. Acad. Sci.: Physics, 59, 20–24 (1995).
28.
go back to reference V. F. Strizhov and E. V. Tkalya, “Decay channel of low-lying isomer state of the 229Th nucleus. Possibilities of experimental investigation,” Sov. Phys. JETP, 72, 387 (1991). V. F. Strizhov and E. V. Tkalya, “Decay channel of low-lying isomer state of the 229Th nucleus. Possibilities of experimental investigation,” Sov. Phys. JETP, 72, 387 (1991).
29.
go back to reference E. V. Tkalya, V. O. Varlamov, V. V. Lomonosov, and S. A. Nikulin, “Processes of the nuclear isomer 229mTh (3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons,” Phys. Scripta, 53, 296–299 (1996).ADSCrossRef E. V. Tkalya, V. O. Varlamov, V. V. Lomonosov, and S. A. Nikulin, “Processes of the nuclear isomer 229mTh (3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons,” Phys. Scripta, 53, 296–299 (1996).ADSCrossRef
30.
go back to reference E. V. Tkalya, A. N. Zherikin, and V. I. Zhudov, “Decay of the low-energy nuclear isomer 229Th m (3/2+, 3.5 ± 1.0 eV) in solids (dielectrics and metals): a new scheme of experimental research,” Phys. Rev. C, 61, 064308 (2000).ADSCrossRef E. V. Tkalya, A. N. Zherikin, and V. I. Zhudov, “Decay of the low-energy nuclear isomer 229Th m (3/2+, 3.5 ± 1.0 eV) in solids (dielectrics and metals): a new scheme of experimental research,” Phys. Rev. C, 61, 064308 (2000).ADSCrossRef
31.
go back to reference E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in 229Th,” Euro-Phys. Lett., 61, 181–186 (2003).ADSCrossRef E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in 229Th,” Euro-Phys. Lett., 61, 181–186 (2003).ADSCrossRef
32.
go back to reference N. Minkov and A. Pállfy, “Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th,” Phys. Rev. Lett., 118, 212501 (2017).ADSCrossRef N. Minkov and A. Pállfy, “Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th,” Phys. Rev. Lett., 118, 212501 (2017).ADSCrossRef
33.
go back to reference E. V. Tkalya, C. Schneider, J. Jeet, and E. R. Hudson, “Radiative lifetime and energy of the low-energy isomeric level in 229Th,” Phys. Rev. C, 92, 054324 (2015).ADSCrossRef E. V. Tkalya, C. Schneider, J. Jeet, and E. R. Hudson, “Radiative lifetime and energy of the low-energy isomeric level in 229Th,” Phys. Rev. C, 92, 054324 (2015).ADSCrossRef
34.
go back to reference C. J. Campbell, A. G. Radnaev, A. Kuzmich, et al., “Single-ion nuclear clock for metrology at the 19th decimal place,” Phys. Rev. Lett., 108, 120802 (2012).ADSCrossRef C. J. Campbell, A. G. Radnaev, A. Kuzmich, et al., “Single-ion nuclear clock for metrology at the 19th decimal place,” Phys. Rev. Lett., 108, 120802 (2012).ADSCrossRef
35.
go back to reference C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of 229Th for optical excitation of the nuclear isomer,” Phys. Rev. Lett., 106, 223001 (2011).ADSCrossRef C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of 229Th for optical excitation of the nuclear isomer,” Phys. Rev. Lett., 106, 223001 (2011).ADSCrossRef
36.
go back to reference K. Zimmermann, Experiments Towards Optical Nuclear Spectroscopy with Thorium-229: PhD Thesis, University of Hannover, Germany (2010). K. Zimmermann, Experiments Towards Optical Nuclear Spectroscopy with Thorium-229: PhD Thesis, University of Hannover, Germany (2010).
37.
go back to reference P. V. Borisyuk et al., “Trapping, retention and laser cooling of Th3+ ions in a multisection linear quadrupole trap,” Quant. Electr., 47, 406–411 (2017).ADSCrossRef P. V. Borisyuk et al., “Trapping, retention and laser cooling of Th3+ ions in a multisection linear quadrupole trap,” Quant. Electr., 47, 406–411 (2017).ADSCrossRef
38.
go back to reference W. G. Rellergert et al., “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett., 104, 200802 (2010).ADSCrossRef W. G. Rellergert et al., “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett., 104, 200802 (2010).ADSCrossRef
39.
go back to reference G. A. Kazakov et al., “Performance of a 229Thorium solid-state nuclear clock,” New J. Phys., 14, 083019 (2012).ADSCrossRef G. A. Kazakov et al., “Performance of a 229Thorium solid-state nuclear clock,” New J. Phys., 14, 083019 (2012).ADSCrossRef
40.
go back to reference E. Swanberg, Searching for the Decay of 229m Th: PhD Thesis, University of California, Berkeley (2012). E. Swanberg, Searching for the Decay of 229m Th: PhD Thesis, University of California, Berkeley (2012).
41.
go back to reference X. Zhao et al., “Observation of the deexcitation of the 229mTh nuclear isomer,” Phys. Rev. Lett.,109, 160801 (2012). X. Zhao et al., “Observation of the deexcitation of the 229mTh nuclear isomer,” Phys. Rev. Lett.,109, 160801 (2012).
42.
go back to reference E. Peik and K. Zimmermann, “Comment on ‘Observation of the deexcitation of the 229mTh nuclear isomer’,” Phys. Rev. Lett., 111, 018901 (2013).ADSCrossRef E. Peik and K. Zimmermann, “Comment on ‘Observation of the deexcitation of the 229mTh nuclear isomer’,” Phys. Rev. Lett., 111, 018901 (2013).ADSCrossRef
43.
go back to reference L. von der Wense et al., “Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th,” JINST, 8, P03005 (2013).CrossRef L. von der Wense et al., “Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th,” JINST, 8, P03005 (2013).CrossRef
44.
go back to reference M. P. Hehlen et al., “Optical spectroscopy of an atomic nucleus: Progress toward direct observation of the 229Th isomer transition,” J. Lumin., 133, 91–95 (2013).CrossRef M. P. Hehlen et al., “Optical spectroscopy of an atomic nucleus: Progress toward direct observation of the 229Th isomer transition,” J. Lumin., 133, 91–95 (2013).CrossRef
45.
go back to reference S. Stellmer et al., “Feasibility study of measuring the 229Th nuclear isomer transition with 233U-doped crystals,” Phys. Rev. C, 94, 014302 (2016).ADSCrossRef S. Stellmer et al., “Feasibility study of measuring the 229Th nuclear isomer transition with 233U-doped crystals,” Phys. Rev. C, 94, 014302 (2016).ADSCrossRef
47.
go back to reference S. G. Porsev, V. V. Flambaum, E. Peik, and Chr. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th1+,” Phys. Rev. Lett., 105, 182501 (2010). S. G. Porsev, V. V. Flambaum, E. Peik, and Chr. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th1+,” Phys. Rev. Lett., 105, 182501 (2010).
48.
go back to reference O. A. Herrera-Sancho, Laser Excitation of 8-eV Electronic States in Th + : A First Pillar of the Electronic Bridge Toward Excitation of the Th-229 Nucleus: PhD Thesis, Univ. Hannover, Germany (2012). O. A. Herrera-Sancho, Laser Excitation of 8-eV Electronic States in Th + : A First Pillar of the Electronic Bridge Toward Excitation of the Th-229 Nucleus: PhD Thesis, Univ. Hannover, Germany (2012).
49.
go back to reference C. J. Campbell et al., “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett., 102, 233004 (2009).ADSCrossRef C. J. Campbell et al., “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett., 102, 233004 (2009).ADSCrossRef
50.
go back to reference J. Jeet et al., “Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition,” Phys. Rev. Lett., 114, 253001 (2015).ADSCrossRef J. Jeet et al., “Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition,” Phys. Rev. Lett., 114, 253001 (2015).ADSCrossRef
51.
go back to reference S. Stellmer, M. Schreitl, and T. Schumm, “Radioluminescence and photoluminescence of Th:CaF2 crystals,” Sci. Reports, 5, 15580 (2015).ADSCrossRef S. Stellmer, M. Schreitl, and T. Schumm, “Radioluminescence and photoluminescence of Th:CaF2 crystals,” Sci. Reports, 5, 15580 (2015).ADSCrossRef
52.
go back to reference A. Yamaguchi et al., “Experimental search for the low-energy nuclear transition in 229Th with undulator radiation,” New J. Phys., 17, 053053 (2015).ADSCrossRef A. Yamaguchi et al., “Experimental search for the low-energy nuclear transition in 229Th with undulator radiation,” New J. Phys., 17, 053053 (2015).ADSCrossRef
53.
go back to reference S. Stellmer et al., “Towards measurements of the nuclear clock transition in 229Th,” J. Phys.: Conf. Ser., 723, 012059 (2016). S. Stellmer et al., “Towards measurements of the nuclear clock transition in 229Th,” J. Phys.: Conf. Ser., 723, 012059 (2016).
54.
go back to reference Yu. P. Gangrsky et al., “Search for light radiation in decay of 229Th isomer with anomalously low excitation energy,” Bull. Rus. Acad. Sci. Phys., 69, 1857 (2005). Yu. P. Gangrsky et al., “Search for light radiation in decay of 229Th isomer with anomalously low excitation energy,” Bull. Rus. Acad. Sci. Phys., 69, 1857 (2005).
55.
go back to reference L. von der Wense et al., “Direct detection of the 229Th nuclear clock transition,” Nature, 533, 47–51 (2016).ADSCrossRef L. von der Wense et al., “Direct detection of the 229Th nuclear clock transition,” Nature, 533, 47–51 (2016).ADSCrossRef
56.
go back to reference B. Seiferle, L. von der Wense, and P. G. Thirolf, “Lifetime measurement of the 229Th nuclear isomer,” Phys. Rev. Lett., 118, 042501 (2017).ADSCrossRef B. Seiferle, L. von der Wense, and P. G. Thirolf, “Lifetime measurement of the 229Th nuclear isomer,” Phys. Rev. Lett., 118, 042501 (2017).ADSCrossRef
57.
go back to reference B. Seiferle, L. von der Wense, and P.G. Thirolf, “Feasibility study of internal conversion electron spectroscopy of 229mTh,” Eur. Phys. J. A, 53, 108 (2017).ADSCrossRef B. Seiferle, L. von der Wense, and P.G. Thirolf, “Feasibility study of internal conversion electron spectroscopy of 229mTh,” Eur. Phys. J. A, 53, 108 (2017).ADSCrossRef
58.
go back to reference F. Ponce, High Accuracy Measurement of the Nuclear Decay of U-235m and Search for the Nuclear Decay of Th-229m: PhD Thesis, University of California, USA (2017). F. Ponce, High Accuracy Measurement of the Nuclear Decay of U-235m and Search for the Nuclear Decay of Th-229m: PhD Thesis, University of California, USA (2017).
59.
go back to reference V. O. Varlamov et al., “Excitation of a 229mTh ((3/2)+, 3.5 eV) isomer by surface plasmons,” Phys. Dokl., 41, 47 (1996).ADSMathSciNet V. O. Varlamov et al., “Excitation of a 229mTh ((3/2)+, 3.5 eV) isomer by surface plasmons,” Phys. Dokl., 41, 47 (1996).ADSMathSciNet
60.
go back to reference L. von der Wense et al., “Laser excitation scheme for 229mTh,” Phys. Rev. Lett., accepted for publication. L. von der Wense et al., “Laser excitation scheme for 229mTh,” Phys. Rev. Lett., accepted for publication.
61.
go back to reference G. A. Kazakov et al., “Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter,” Nucl. Instrum. Meth. A, 735, 229–239 (2014).ADSCrossRef G. A. Kazakov et al., “Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter,” Nucl. Instrum. Meth. A, 735, 229–239 (2014).ADSCrossRef
62.
go back to reference P. Schneider, Spektroskopische Messungen an Thorium-229 mit einem Detektor-Array aus metallischen magnetischen Kalorimetern: Master Thesis, Ruprecht-Karls-Universität Heidelberg, Germany (2016). P. Schneider, Spektroskopische Messungen an Thorium-229 mit einem Detektor-Array aus metallischen magnetischen Kalorimetern: Master Thesis, Ruprecht-Karls-Universität Heidelberg, Germany (2016).
63.
go back to reference A. Pálffy et al., “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett., 99, 172502 (2007).ADSCrossRef A. Pálffy et al., “Isomer triggering via nuclear excitation by electron capture,” Phys. Rev. Lett., 99, 172502 (2007).ADSCrossRef
64.
go back to reference C. Brandau et al., “Probing nuclear properties by resonant atomic collisions between electrons and ions,” Phys. Scr., T156, 014050 (2013).ADSCrossRef C. Brandau et al., “Probing nuclear properties by resonant atomic collisions between electrons and ions,” Phys. Scr., T156, 014050 (2013).ADSCrossRef
65.
go back to reference X. Ma et al., “Proposal for precision determination of 7.8 eV isomeric state in 229Th at heavy ion storage ring,” Phys. Scr., T166, 014012 (2015).ADSCrossRef X. Ma et al., “Proposal for precision determination of 7.8 eV isomeric state in 229Th at heavy ion storage ring,” Phys. Scr., T166, 014012 (2015).ADSCrossRef
66.
go back to reference W. T. Liao and A. Pálffy, “Optomechanically induced transparency of x-rays via optical control,” Sci. Reports, 7, 321 (2017).ADSCrossRef W. T. Liao and A. Pálffy, “Optomechanically induced transparency of x-rays via optical control,” Sci. Reports, 7, 321 (2017).ADSCrossRef
67.
go back to reference K. Beloy, “Hyperfine structure in 229gTh3+ as a probe of the 229gTh → 229mTh nuclear excitation energy,” Phys. Rev. Lett., 112, 062503 (2014).ADSCrossRef K. Beloy, “Hyperfine structure in 229gTh3+ as a probe of the 229gTh → 229mTh nuclear excitation energy,” Phys. Rev. Lett., 112, 062503 (2014).ADSCrossRef
68.
go back to reference V. Sonnenschein et al., “The search for the existence of 229mTh at IGISOL,” Eur. Phys. J. A, 48, 52 (2012).ADSCrossRef V. Sonnenschein et al., “The search for the existence of 229mTh at IGISOL,” Eur. Phys. J. A, 48, 52 (2012).ADSCrossRef
69.
70.
go back to reference V. V. Flambaum, “Enhanced effect of temporal variation of the ne structure constant and the strong interaction in 229Th,” Phys. Rev. Lett., 97, 092502 (2006).ADSCrossRef V. V. Flambaum, “Enhanced effect of temporal variation of the ne structure constant and the strong interaction in 229Th,” Phys. Rev. Lett., 97, 092502 (2006).ADSCrossRef
71.
go back to reference A. Cingöz et al., “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature, 482, 68–71 (2012).ADSCrossRef A. Cingöz et al., “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature, 482, 68–71 (2012).ADSCrossRef
72.
go back to reference S. M. Cavaletto et al., “Broadband high-resolution x-ray frequency combs,” Nature Photonics, 8, 520–523 (2014).ADSCrossRef S. M. Cavaletto et al., “Broadband high-resolution x-ray frequency combs,” Nature Photonics, 8, 520–523 (2014).ADSCrossRef
Metadata
Title
Towards a 229Th-Based Nuclear Clock
Authors
L. von der Wense
B. Seiferle
P. G. Thirolf
Publication date
12-03-2018
Publisher
Springer US
Published in
Measurement Techniques / Issue 12/2018
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1337-1

Other articles of this Issue 12/2018

Measurement Techniques 12/2018 Go to the issue