Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Towards Arbitrary Noise Augmentation—Deep Learning for Sampling from Arbitrary Probability Distributions

Authors : Felix Horger, Tobias Würfl, Vincent Christlein, Andreas Maier

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

Accurate noise modelling is important for training of deep learning reconstruction algorithms. While noise models are well known for traditional imaging techniques, the noise distribution of a novel sensor may be difficult to determine a priori. Therefore, we propose learning arbitrary noise distributions. To do so, this paper proposes a fully connected neural network model to map samples from a uniform distribution to samples of any explicitly known probability density function. During the training, the Jensen-Shannon divergence between the distribution of the model’s output and the target distribution is minimized.
We experimentally demonstrate that our model converges towards the desired state. It provides an alternative to existing sampling methods such as inversion sampling, rejection sampling, Gaussian mixture models and Markov-Chain-Monte-Carlo. Our model has high sampling efficiency and is easily applied to any probability distribution, without the need of further analytical or numerical calculations.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: Medical Image Computing and Computer-assisted Intervention (MICCAI) 2018, Granada, Spain, 16–20 September 2018 (2018, to appear) Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: Medical Image Computing and Computer-assisted Intervention (MICCAI) 2018, Granada, Spain, 16–20 September 2018 (2018, to appear)
2.
go back to reference Hoppe, E., et al.: Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. In: German Medical Data Sciences: Visions and Bridges (62. Jahrestagung der GMDS) 2017, Oldenburg, Germany, 17–21 September 2017, pp. 202–206 (2017) Hoppe, E., et al.: Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. In: German Medical Data Sciences: Visions and Bridges (62. Jahrestagung der GMDS) 2017, Oldenburg, Germany, 17–21 September 2017, pp. 202–206 (2017)
3.
go back to reference Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006) MATH Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006) MATH
8.
go back to reference Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, pp. 249–256 (2015) Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, pp. 249–256 (2015)
11.
go back to reference Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London (1986) CrossRef Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London (1986) CrossRef
12.
go back to reference Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory. 49(7), 1858–1860 (2003) MathSciNetCrossRef Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory. 49(7), 1858–1860 (2003) MathSciNetCrossRef
Metadata
Title
Towards Arbitrary Noise Augmentation—Deep Learning for Sampling from Arbitrary Probability Distributions
Authors
Felix Horger
Tobias Würfl
Vincent Christlein
Andreas Maier
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_15

Premium Partner