Skip to main content
Top

2017 | OriginalPaper | Chapter

Towards Deterministic and Stochastic Computations with the Izhikevich Spiking-Neuron Model

Authors : Ramin M. Hasani, Guodong Wang, Radu Grosu

Published in: Advances in Computational Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we analyze simple computations with spiking neural networks (SNN), laying the foundation for more sophisticated calculations. We consider both a deterministic and a stochastic computation framework with SNNs, by utilizing the Izhikevich neuron model in various simulated experiments. Within the deterministic-computation framework, we design and implement fundamental mathematical operators such as addition, subtraction, multiplexing and multiplication. We show that cross-inhibition of groups of neurons in a winner-takes-all (WTA) network-configuration produces considerable computation power and results in the generation of selective behavior that can be exploited in various robotic control tasks. In the stochastic-computation framework, we discuss an alternative computation paradigm to the classic von Neumann architecture, which supports information storage and decision making. This paradigm uses the experimentally-verified property of networks of randomly connected spiking neurons, of storing information as a stationary probability distribution in each of the sub-network of the SNNs. We reproduce this property by simulating the behavior of a toy-network of randomly-connected stochastic Izhikevich neurons.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796), 80–85 (2006)MathSciNetCrossRefMATH Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796), 80–85 (2006)MathSciNetCrossRefMATH
2.
go back to reference Abbott, L.F., Kepler, T.B.: Model neurons: from Hodgkin-huxley to hopfield. In: Garrido, L. (ed.) Statistical Mechanics of Neural Networks. LNP, vol. 368, pp. 5–18. Springer, Heidelberg (1990)CrossRef Abbott, L.F., Kepler, T.B.: Model neurons: from Hodgkin-huxley to hopfield. In: Garrido, L. (ed.) Statistical Mechanics of Neural Networks. LNP, vol. 368, pp. 5–18. Springer, Heidelberg (1990)CrossRef
3.
go back to reference Izhikevich, E.M.: Which model to use for cortical spiking neurons. IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRef Izhikevich, E.M.: Which model to use for cortical spiking neurons. IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRef
4.
go back to reference Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)CrossRef Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)CrossRef
5.
go back to reference Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge (1998) Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge (1998)
6.
go back to reference Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)CrossRef Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)CrossRef
7.
go back to reference Schutter, E.D.: Computational Modeling Methods for Neuroscientists. The MIT Press, Cambridge (2009)CrossRefMATH Schutter, E.D.: Computational Modeling Methods for Neuroscientists. The MIT Press, Cambridge (2009)CrossRefMATH
8.
go back to reference Pfeil, T., Grubl, A., Jeltsch, S., Muller, E., Muller, P., Petrovici, M.A., Schmuker, M., Bruderle, D., Schemmel, J., Meier, K.: Six networks on a universal neuromorphic computing substrate. arXiv preprint arXiv:1210.7083 (2012) Pfeil, T., Grubl, A., Jeltsch, S., Muller, E., Muller, P., Petrovici, M.A., Schmuker, M., Bruderle, D., Schemmel, J., Meier, K.: Six networks on a universal neuromorphic computing substrate. arXiv preprint arXiv:​1210.​7083 (2012)
9.
go back to reference McDonnell, M.D., Boahen, K., Ijspeert, A., Sejnowski, T.J.: Engineering intelligent electronic systems based on computational neuroscience [scanning the issue]. Proc. IEEE 102(5), 646–651 (2014)CrossRef McDonnell, M.D., Boahen, K., Ijspeert, A., Sejnowski, T.J.: Engineering intelligent electronic systems based on computational neuroscience [scanning the issue]. Proc. IEEE 102(5), 646–651 (2014)CrossRef
10.
go back to reference Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bussat, J.-M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A., Boahen, K.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)CrossRef Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bussat, J.-M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A., Boahen, K.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)CrossRef
11.
go back to reference Maass, W.: Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102(5), 860–880 (2014)CrossRef Maass, W.: Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102(5), 860–880 (2014)CrossRef
12.
go back to reference Hasani, R.M.: Design of CMOS silicon neurons for noise assisted computations in spiking neural networks. Politesi Digital Library of PhD and Post Graduate Theses, Politecnico di Milano (2015) Hasani, R.M.: Design of CMOS silicon neurons for noise assisted computations in spiking neural networks. Politesi Digital Library of PhD and Post Graduate Theses, Politecnico di Milano (2015)
13.
go back to reference Hasani, R.M., Ferrari, G., Yamamoto, H., Kono, S., Ishihara, K., Fujimori, S., Tanii, T., Prati, E.: Control of the correlation of spontaneous neuron activity in biological and noise-activated CMOS artificial neural icrocircuits. arXiv preprint arXiv:1702.07426 (2017) Hasani, R.M., Ferrari, G., Yamamoto, H., Kono, S., Ishihara, K., Fujimori, S., Tanii, T., Prati, E.: Control of the correlation of spontaneous neuron activity in biological and noise-activated CMOS artificial neural icrocircuits. arXiv preprint arXiv:​1702.​07426 (2017)
14.
go back to reference Magee, J.C.: Dendritic ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2(6), 508–514 (1999)CrossRef Magee, J.C.: Dendritic ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2(6), 508–514 (1999)CrossRef
15.
go back to reference Maass, W.: On the computational power of winner-take-all. Neural Comput. 12(11), 2519–2535 (2000)CrossRef Maass, W.: On the computational power of winner-take-all. Neural Comput. 12(11), 2519–2535 (2000)CrossRef
16.
go back to reference Habenschuss, S., Jonke, Z., Maass, W.: Stochastic computations in cortical microcircuit models. PLoS Comput. Biol. 9(11), e1003311 (2013)CrossRef Habenschuss, S., Jonke, Z., Maass, W.: Stochastic computations in cortical microcircuit models. PLoS Comput. Biol. 9(11), e1003311 (2013)CrossRef
17.
go back to reference Jones, P.W., Gabbiani, F.: Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron. J. Neurosci. 32(14), 4923–4934 (2012)CrossRef Jones, P.W., Gabbiani, F.: Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron. J. Neurosci. 32(14), 4923–4934 (2012)CrossRef
18.
go back to reference Vul, E., Pashler, H.: Measuring the crowd within probabilistic representations within individuals. Psychol. Sci. 19(7), 645–647 (2008)CrossRef Vul, E., Pashler, H.: Measuring the crowd within probabilistic representations within individuals. Psychol. Sci. 19(7), 645–647 (2008)CrossRef
19.
go back to reference Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)MathSciNetCrossRefMATH Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)MathSciNetCrossRefMATH
20.
go back to reference Jonke, Z., Habenschuss, S., Maass, W.: Solving constraint satisfaction problems with networks of spiking neurons. Front. Neurosci. 10, 118 (2016)CrossRef Jonke, Z., Habenschuss, S., Maass, W.: Solving constraint satisfaction problems with networks of spiking neurons. Front. Neurosci. 10, 118 (2016)CrossRef
21.
go back to reference Binas, J., Indiveri, G., Pfeiffer, M.: Spiking analog VLSI neuron assemblies as constraint satisfaction problem solvers. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2094–2097. IEEE (2016) Binas, J., Indiveri, G., Pfeiffer, M.: Spiking analog VLSI neuron assemblies as constraint satisfaction problem solvers. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2094–2097. IEEE (2016)
Metadata
Title
Towards Deterministic and Stochastic Computations with the Izhikevich Spiking-Neuron Model
Authors
Ramin M. Hasani
Guodong Wang
Radu Grosu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59147-6_34

Premium Partner