Skip to main content
Top

2025 | OriginalPaper | Chapter

Towards Enhancing Linked Data Retrieval in Conversational UIs Using Large Language Models

Authors : Omar Mussa, Omer Rana, Benoît Goossens, Pablo Orozco-terWengel, Charith Perera

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite the recent broad adoption of Large Language Models (LLMs) across various domains, their potential for enriching information systems in extracting and exploring Linked Data (LD) and Resource Description Framework (RDF) triplestores has not been extensively explored. This paper examines the integration of LLMs within existing systems, emphasising the enhancement of conversational user interfaces (UIs) and their capabilities for data extraction by producing more accurate SPARQL queries without the requirement for model retraining. Typically, conversational UI models necessitate retraining with the introduction of new datasets or updates, limiting their functionality as general-purpose extraction tools. Our approach addresses this limitation by incorporating LLMs into the conversational UI workflow, significantly enhancing their ability to comprehend and process user queries effectively. By leveraging the advanced natural language understanding capabilities of LLMs, our method improves RDF entity extraction within web systems employing conventional chatbots. This integration facilitates a more nuanced and context-aware interaction model, critical for handling the complex query patterns often encountered in RDF datasets and Linked Open Data (LOD) endpoints. The evaluation of this methodology shows a marked enhancement in system expressivity and the accuracy of responses to user queries, indicating a promising direction for future research in this area. This investigation not only underscores the versatility of LLMs in enhancing existing information systems but also sets the stage for further explorations into their potential applications within more specialised domains of web information systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agrawal, S., et al.: In-context examples selection for machine translation. In: Findings of ACL 2023 (2023) Agrawal, S., et al.: In-context examples selection for machine translation. In: Findings of ACL 2023 (2023)
3.
go back to reference Baidoo-anu, D., Owusu Ansah, L.: Education in the Era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning. J. AI 7(1), 52–62 (2023) Baidoo-anu, D., Owusu Ansah, L.: Education in the Era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning. J. AI 7(1), 52–62 (2023)
4.
go back to reference Brown, T.B., et al.: Language models are few-shot learners. In: NIPS ’20. Curran Associates Inc. (2020) Brown, T.B., et al.: Language models are few-shot learners. In: NIPS ’20. Curran Associates Inc. (2020)
5.
go back to reference Chung, H.W., et al.: Scaling instruction-finetuned language models. J. Mach. Learn. Res. 25(70), 1–53 (2024) Chung, H.W., et al.: Scaling instruction-finetuned language models. J. Mach. Learn. Res. 25(70), 1–53 (2024)
6.
go back to reference Dimitrakis, E., et al.: A survey on question answering systems over linked data and documents. J. Intell. Inf. Syst. 55(2), 233–259 (2020) Dimitrakis, E., et al.: A survey on question answering systems over linked data and documents. J. Intell. Inf. Syst. 55(2), 233–259 (2020)
7.
go back to reference Dowling, M., Lucey, B.: ChatGPT for (finance) research, the bananarama conjecture. Finan. Res. Lett. 53, 103662 (2023) Dowling, M., Lucey, B.: ChatGPT for (finance) research, the bananarama conjecture. Finan. Res. Lett. 53, 103662 (2023)
8.
go back to reference Faria, B., et al.: Question answering over linked data with GPT-3. In: SLATE 2023 (2023) Faria, B., et al.: Question answering over linked data with GPT-3. In: SLATE 2023 (2023)
9.
go back to reference Feng, Y., et al.: GeoQAMap - geographic question answering with maps leveraging LLM and open knowledge base. In: 12th International Conference on Geographic Information Science (GIScience 2023). LIPIcs (2023) Feng, Y., et al.: GeoQAMap - geographic question answering with maps leveraging LLM and open knowledge base. In: 12th International Conference on Geographic Information Science (GIScience 2023). LIPIcs (2023)
10.
go back to reference Hu, N., et al.: An empirical study of pre-trained language models in simple knowledge graph question answering. World Wide Web 26(5), 2855–2886 (2023)CrossRef Hu, N., et al.: An empirical study of pre-trained language models in simple knowledge graph question answering. World Wide Web 26(5), 2855–2886 (2023)CrossRef
11.
go back to reference Hu, Z., et al.: Deep learning for named entity recognition: a survey. Neural Comput. Appl. 36(16), 8995–9022 (2024) Hu, Z., et al.: Deep learning for named entity recognition: a survey. Neural Comput. Appl. 36(16), 8995–9022 (2024)
12.
go back to reference Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefrançois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Seman. 56, 1–10 (2019) Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefrançois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Seman. 56, 1–10 (2019)
13.
go back to reference Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023) Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023)
14.
go back to reference Liu, J., et al.: What makes good in-context examples for GPT-3? In: Proceedings of DeeLIO 2022. ACL (2022) Liu, J., et al.: What makes good in-context examples for GPT-3? In: Proceedings of DeeLIO 2022. ACL (2022)
15.
go back to reference Manning, C.D., et al.: Introduction to Information Retrieval. Cambridge University Press (2008) Manning, C.D., et al.: Introduction to Information Retrieval. Cambridge University Press (2008)
16.
go back to reference Mussa, O., et al.: ForestQB: enhancing linked data exploration through graphical and conversational UIs integration. ACM J. Comput. Sustain. Soc. 2(3) (2024) Mussa, O., et al.: ForestQB: enhancing linked data exploration through graphical and conversational UIs integration. ACM J. Comput. Sustain. Soc. 2(3) (2024)
17.
go back to reference Ni, J., et al.: Sentence-T5: scalable sentence encoders from pre-trained text-to-text models (2021) Ni, J., et al.: Sentence-T5: scalable sentence encoders from pre-trained text-to-text models (2021)
18.
go back to reference Petroni, F., et al.: Language Models as Knowledge Bases? In: EMNLP-IJCNLP. ACL (2019) Petroni, F., et al.: Language Models as Knowledge Bases? In: EMNLP-IJCNLP. ACL (2019)
19.
go back to reference Reimers, N., Gurevych, I.: Sentence-BERT: sentence Embeddings using siamese BERT-networks. In: EMNLP-IJCNLP. ACL (2019) Reimers, N., Gurevych, I.: Sentence-BERT: sentence Embeddings using siamese BERT-networks. In: EMNLP-IJCNLP. ACL (2019)
21.
go back to reference Sallam, M.: ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare 11(6), 887 (2023) Sallam, M.: ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare 11(6), 887 (2023)
23.
24.
go back to reference Zhang, N., et al.: Differentiable prompt makes pre-trained language models better few-shot learners. In: ICLR 2022 (2022) Zhang, N., et al.: Differentiable prompt makes pre-trained language models better few-shot learners. In: ICLR 2022 (2022)
25.
go back to reference Zhang, R., et al.: Prompt-based rule discovery and boosting for interactive weakly-supervised learning. In: Proceedings of ACL 2022, Vol. 1: Long Papers (2022) Zhang, R., et al.: Prompt-based rule discovery and boosting for interactive weakly-supervised learning. In: Proceedings of ACL 2022, Vol. 1: Long Papers (2022)
Metadata
Title
Towards Enhancing Linked Data Retrieval in Conversational UIs Using Large Language Models
Authors
Omar Mussa
Omer Rana
Benoît Goossens
Pablo Orozco-terWengel
Charith Perera
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_18

Premium Partner