Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Towards Long-Term Autonomy Based on Temporal Planning

Authors: Yaniel Carreno, Ronald P. A. Petrick, Yvan Petillot

Published in: Towards Autonomous Robotic Systems

Publisher: Springer International Publishing

share
SHARE

Abstract

This paper investigates the application of temporal planning to multiple robots in long-term missions, using the OPTIC and POPF temporal planners. We design a new planning domain, motivated by a realistic indoor-outdoor scenario. In particular, we investigate plan concurrency, makespan and plan generation time in the multi-robot problem and propose a schema which has been shown to improve plan quality while significantly reducing planning time for the multi-agent problem. Experiments are done in simulation using ROS and Gazebo, and demonstrated in missions with concurrent actions. The ROSPlan framework is also extended to work with multiple robots and used to integrate the planners in ROS. OPTIC provides the best overall solution considering the domain complexity and mission execution in the environment.
Footnotes
1
Domain and problem examples are available at https://​github.​com/​MA-TemporalP.
 
2
In the following, we will use ?r to denote a parameter of type robot, ?wp a parameter of type waypoint, ?o a parameter of type observation_point, and ?s a parameter of type sensors.
 
Literature
1.
go back to reference Benton, J., Coles, A.J., Coles, A.: Temporal planning with preferences and time-dependent continuous costs. In: International Conference on Automated Planning and Scheduling (2012) Benton, J., Coles, A.J., Coles, A.: Temporal planning with preferences and time-dependent continuous costs. In: International Conference on Automated Planning and Scheduling (2012)
2.
go back to reference Cashmore, M., Coles, A., Cserna, B., Karpas, E., Magazzeni, D., Ruml, W.: Situated planning for execution under temporal constraints. In: Learning, and Execution for Goal Directed Autonomy, AAAI Spring Symposium on Integrating Representation, Reasoning (2018) Cashmore, M., Coles, A., Cserna, B., Karpas, E., Magazzeni, D., Ruml, W.: Situated planning for execution under temporal constraints. In: Learning, and Execution for Goal Directed Autonomy, AAAI Spring Symposium on Integrating Representation, Reasoning (2018)
3.
go back to reference Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: International Conference on Automated Planning and Scheduling, pp. 333–341 (2015) Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: International Conference on Automated Planning and Scheduling, pp. 333–341 (2015)
4.
go back to reference Chanel, C.P.C., Lesire, C., Teichteil-Königsbuch, F.: A robotic execution framework for online probabilistic (re)planning. In: Proceedings of ICAPS (2014) Chanel, C.P.C., Lesire, C., Teichteil-Königsbuch, F.: A robotic execution framework for online probabilistic (re)planning. In: Proceedings of ICAPS (2014)
5.
go back to reference Chrpa, L., Pinto, J., Ribeiro, M.A., Py, F., Sousa, J., Rajan, K.: On mixed-initiative planning and control for autonomous underwater vehicles. In: IROS, pp. 1685–1690 (2015) Chrpa, L., Pinto, J., Ribeiro, M.A., Py, F., Sousa, J., Rajan, K.: On mixed-initiative planning and control for autonomous underwater vehicles. In: IROS, pp. 1685–1690 (2015)
6.
go back to reference Coles, A.J., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In: ICAPS, pp. 42–49 (2010) Coles, A.J., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In: ICAPS, pp. 42–49 (2010)
7.
go back to reference Crosby, M., Petrick, R: Temporal multiagent planning with concurrent action constraints. In: ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP) (2014) Crosby, M., Petrick, R: Temporal multiagent planning with concurrent action constraints. In: ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP) (2014)
8.
go back to reference De Weerdt, M., Ter Mors, A., Witteveen, C.: Multi-agent planning: an introduction to planning and coordination. In: Handouts of the European Agent Summer. Citeseer (2005) De Weerdt, M., Ter Mors, A., Witteveen, C.: Multi-agent planning: an introduction to planning and coordination. In: Handouts of the European Agent Summer. Citeseer (2005)
9.
go back to reference Della Penna, G., Magazzeni, D., Mercorio, F.: A universal planning system for hybrid domains. Appl. Intell. 36(4), 932–959 (2012) CrossRef Della Penna, G., Magazzeni, D., Mercorio, F.: A universal planning system for hybrid domains. Appl. Intell. 36(4), 932–959 (2012) CrossRef
10.
go back to reference Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Towards Service Robots for Everyday Environments, pp. 49–64 (2012) Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Towards Service Robots for Everyday Environments, pp. 49–64 (2012)
11.
go back to reference Fernandez-Gonzalez, E., Williams, B., Karpas, E.: ScottyActivity: mixed discrete-continuous planning with convex optimization. JAIR 62, 579–664 (2018) MathSciNetCrossRef Fernandez-Gonzalez, E., Williams, B., Karpas, E.: ScottyActivity: mixed discrete-continuous planning with convex optimization. JAIR 62, 579–664 (2018) MathSciNetCrossRef
12.
go back to reference Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003) CrossRef Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003) CrossRef
13.
go back to reference Ingham, M., Ragno, R., Williams, B.C.: A reactive model-based programming language for robotic space explorers. In: Proceedings of ISAIRAS-01 (2001) Ingham, M., Ragno, R., Williams, B.C.: A reactive model-based programming language for robotic space explorers. In: Proceedings of ISAIRAS-01 (2001)
14.
go back to reference Marques, T., Pinto, J., Dias, P., de Sousa, J.T.: MvPlanning: a framework for planning and coordination of multiple autonomous vehicles. In: OCEANS-Anchorage, pp. 1–6 (2017) Marques, T., Pinto, J., Dias, P., de Sousa, J.T.: MvPlanning: a framework for planning and coordination of multiple autonomous vehicles. In: OCEANS-Anchorage, pp. 1–6 (2017)
15.
go back to reference McDermott, D., et al.: PDDL - the planning domain definition language (version 1.2). Technical report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998) McDermott, D., et al.: PDDL - the planning domain definition language (version 1.2). Technical report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)
16.
go back to reference McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for AUV control. In: IEEE International Conference on Robotics and Automation, pp. 1049–1054 (2008) McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for AUV control. In: IEEE International Conference on Robotics and Automation, pp. 1049–1054 (2008)
17.
go back to reference Muscettola, N., Dorais, G.A., Fry, C., Levinson, R., Plaunt, C.: IDEA: planning at the core of autonomous reactive agents. In: NASA Workshop on Planning and Scheduling for Space (2002) Muscettola, N., Dorais, G.A., Fry, C., Levinson, R., Plaunt, C.: IDEA: planning at the core of autonomous reactive agents. In: NASA Workshop on Planning and Scheduling for Space (2002)
18.
go back to reference Nunes, E., Gini, M.L.: Multi-robot auctions for allocation of tasks with temporal constraints. In: AAAI, pp. 2110–2116 (2015) Nunes, E., Gini, M.L.: Multi-robot auctions for allocation of tasks with temporal constraints. In: AAAI, pp. 2110–2116 (2015)
19.
go back to reference Nunes, E., McIntire, M., Gini, M.: Decentralized multi-robot allocation of tasks with temporal and precedence constraints. Adv. Robot. 31(22), 1193–1207 (2017) CrossRef Nunes, E., McIntire, M., Gini, M.: Decentralized multi-robot allocation of tasks with temporal and precedence constraints. Adv. Robot. 31(22), 1193–1207 (2017) CrossRef
20.
go back to reference Piotrowski, W., Fox, M., Long, D., Magazzeni, D., Mercorio, F.: Heuristic planning for hybrid systems. In: AAAI, pp. 4254–4255 (2016) Piotrowski, W., Fox, M., Long, D., Magazzeni, D., Mercorio, F.: Heuristic planning for hybrid systems. In: AAAI, pp. 4254–4255 (2016)
21.
go back to reference Ponda, S., Redding, J., Choi, H.-L., How, J.P., Vavrina, M., Vian, J.: Decentralized planning for complex missions with dynamic communication constraints. In: American Control Conference, pp. 3998–4003 (2010) Ponda, S., Redding, J., Choi, H.-L., How, J.P., Vavrina, M., Vian, J.: Decentralized planning for complex missions with dynamic communication constraints. In: American Control Conference, pp. 3998–4003 (2010)
22.
go back to reference Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009) Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)
23.
go back to reference Schillinger, P., Bürger, M., Dimarogonas, D.V.: Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. Int. J. Robot. Res. 37, 818–838 (2017) CrossRef Schillinger, P., Bürger, M., Dimarogonas, D.V.: Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. Int. J. Robot. Res. 37, 818–838 (2017) CrossRef
24.
go back to reference Tran, T.T., Vaquero, T., Nejat, G., Beck, J.C.: Robots in retirement homes: applying off-the-shelf planning and scheduling to a team of assistive robots. JAIR 58, 523–590 (2017) MathSciNetCrossRef Tran, T.T., Vaquero, T., Nejat, G., Beck, J.C.: Robots in retirement homes: applying off-the-shelf planning and scheduling to a team of assistive robots. JAIR 58, 523–590 (2017) MathSciNetCrossRef
25.
go back to reference Veloso, M.M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic autonomous mobile service robots. In: IJCAI, p. 4423 (2015) Veloso, M.M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic autonomous mobile service robots. In: IJCAI, p. 4423 (2015)
26.
go back to reference Zhang, Z., Wang, J., Xu, D., Meng, Y.: Task allocation of multi-AUVs based on innovative auction algorithm. In: Proceedings of ISCID, vol. 2, pp. 83–88. IEEE (2017) Zhang, Z., Wang, J., Xu, D., Meng, Y.: Task allocation of multi-AUVs based on innovative auction algorithm. In: Proceedings of ISCID, vol. 2, pp. 83–88. IEEE (2017)
27.
go back to reference Hawes, N., et al.: The strands project: long-term autonomy in everyday environments. IEEE Robot. Autom. Mag. 24(3), 146–156 (2017) MathSciNetCrossRef Hawes, N., et al.: The strands project: long-term autonomy in everyday environments. IEEE Robot. Autom. Mag. 24(3), 146–156 (2017) MathSciNetCrossRef
Metadata
Title
Towards Long-Term Autonomy Based on Temporal Planning
Authors
Yaniel Carreno
Ronald P. A. Petrick
Yvan Petillot
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-25332-5_13

Premium Partner