Skip to main content
Top

2019 | OriginalPaper | Chapter

Towards Moving Virtual Arms Using Brain-Computer Interface

Authors : Jaime Riascos, Steeven Villa, Anderson Maciel, Luciana Nedel, Dante Barone

Published in: Advances in Computer Graphics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Motor imagery Brain-Computer Interface (MI-BCI) is a paradigm widely used for controlling external devices by imagining bodily movements. This technology has inspired researchers to use it in several applications such as robotic prostheses, games, and virtual reality (VR) scenarios. We study the inclusion of an imaginary third arm as a part of the control commands for BCI. To this end, we analyze a set of open-close hand tasks (including a third arm that comes out from the chest) performed in two VR scenarios: the classical BCI Graz, with arrows as feedback; and a first-person view of a human-like avatar performing the corresponding tasks. This study purpose is to explore the influence of both time window of the trials and the frequency bands on the accuracy of the classifiers. Accordingly, we used a Filter Bank Common Spatial Patterns (FBCSP) algorithm for several time windows (100, 200, 400, 600, 800, 1000 and 2000 ms) for extracting features and evaluating the classification accuracy. The offline classification results show that a third arm can be effectively used as a control command (accuracy > 0.62%). Likewise, the human-like avatar condition (\(67\%\)) outperforms the Graz condition (\(63\%\)) significantly, suggesting that the realistic scenario can reduce the abstractness of the third arm. This study, thus, motivates the further inclusion of non-embodied motor imagery task in BCI systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397 (2008). https://doi.org/10.1109/IJCNN.2008.4634130 Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397 (2008). https://​doi.​org/​10.​1109/​IJCNN.​2008.​4634130
5.
go back to reference Gert, P., Leeb, R., Faller, J., Neuper, C.: Brain-computer interface systems used for virtual reality control. In: Kim, J.J. (ed.) Virtual Reality, Chap. 7, pp. 1–19. InTech (2011) Gert, P., Leeb, R., Faller, J., Neuper, C.: Brain-computer interface systems used for virtual reality control. In: Kim, J.J. (ed.) Virtual Reality, Chap. 7, pp. 1–19. InTech (2011)
7.
go back to reference Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)CrossRef Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)CrossRef
12.
go back to reference Pfurtscheller, G.: Quantification of ERD and ERS in the Time Domain, pp. 89–105, 6th edn. Elsevier B.V., Netherlands (1999). Revised edition Pfurtscheller, G.: Quantification of ERD and ERS in the Time Domain, pp. 89–105, 6th edn. Elsevier B.V., Netherlands (1999). Revised edition
Metadata
Title
Towards Moving Virtual Arms Using Brain-Computer Interface
Authors
Jaime Riascos
Steeven Villa
Anderson Maciel
Luciana Nedel
Dante Barone
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_43

Premium Partner