Towards Network Anomaly Detection Using Graph Embedding | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Towards Network Anomaly Detection Using Graph Embedding

Authors : Qingsai Xiao, Jian Liu, Quiyun Wang, Zhengwei Jiang, Xuren Wang, Yepeng Yao

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

In the face of endless cyberattacks, many researchers have proposed machine learning-based network anomaly detection technologies. Traditional statistical features of network flows are manually extracted and rely heavily on expert knowledge, while classifiers based on statistical features have a high false-positive rate. The communications between different hosts forms graphs, which contain a large number of latent features. By combining statistical features with these latent features, we can train better machine learning classifiers. Therefore, we propose a novel network anomaly detection method that can use latent features in graphs and reduce the false positive rate of anomaly detection. We convert network traffic into first-order and second-order graph. The first-order graph learns the latent features from the perspective of a single host, and the second-order graph learns the latent features from a global perspective. This feature extraction process does not require manual participation or expert knowledge. We use these features to train machine learning algorithm classifiers for detecting network anomalies. We conducted experiments on two real-world datasets, and the results show that our approach allows for better learning of latent features and improved accuracy of anomaly detection. In addition, our method has the ability to detect unknown attacks.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Aldwairi, T., Perera, D., Novotny, M.A.: An evaluation of the performance of restricted Boltzmann machines as a model for anomaly network intrusion detection. Comput. Netw. 144, 111–119 (2018) CrossRef Aldwairi, T., Perera, D., Novotny, M.A.: An evaluation of the performance of restricted Boltzmann machines as a model for anomaly network intrusion detection. Comput. Netw. 144, 111–119 (2018) CrossRef
2.
go back to reference Ariu, D., Tronci, R., Giacinto, G.: HMMPayl: an intrusion detection system based on hidden Markov models. Comput. Secur. 30(4), 221–241 (2011) CrossRef Ariu, D., Tronci, R., Giacinto, G.: HMMPayl: an intrusion detection system based on hidden Markov models. Comput. Secur. 30(4), 221–241 (2011) CrossRef
3.
go back to reference Caberera, J., Ravichandran, B., Mehra, R.K.: Statistical traffic modeling for network intrusion detection. In: Proceedings 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (Cat. No. PR00728), pp. 466–473. IEEE (2000) Caberera, J., Ravichandran, B., Mehra, R.K.: Statistical traffic modeling for network intrusion detection. In: Proceedings 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (Cat. No. PR00728), pp. 466–473. IEEE (2000)
5.
go back to reference Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009) CrossRef Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009) CrossRef
6.
go back to reference Gui, H., Liu, J., Tao, F., Jiang, M., Norick, B., Han, J.: Large-scale embedding learning in heterogeneous event data. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 907–912. IEEE (2016) Gui, H., Liu, J., Tao, F., Jiang, M., Norick, B., Han, J.: Large-scale embedding learning in heterogeneous event data. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 907–912. IEEE (2016)
8.
go back to reference Li, A.Q., Ahmed, A., Ravi, S., Smola, A.J.: Reducing the sampling complexity of topic models. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 891–900. ACM (2014) Li, A.Q., Ahmed, A., Ravi, S., Smola, A.J.: Reducing the sampling complexity of topic models. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 891–900. ACM (2014)
9.
go back to reference Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 darpa off-line intrusion detection evaluation. Comput. Netw. 34(4), 579–595 (2000) CrossRef Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 darpa off-line intrusion detection evaluation. Comput. Netw. 34(4), 579–595 (2000) CrossRef
11.
go back to reference Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011) MathSciNetMATH Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011) MathSciNetMATH
12.
go back to reference Ring, M., Dallmann, A., Landes, D., Hotho, A.: IP2Vec: learning similarities between IP addresses. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 657–666. IEEE (2017) Ring, M., Dallmann, A., Landes, D., Hotho, A.: IP2Vec: learning similarities between IP addresses. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 657–666. IEEE (2017)
13.
go back to reference Ring, M., Wunderlich, S., Grüdl, D., Landes, D., Hotho, A.: Flow-based benchmark data sets for intrusion detection. In: Proceedings of the 16th European Conference on Cyber Warfare and Security. ACPI, pp. 361–369 (2017) Ring, M., Wunderlich, S., Grüdl, D., Landes, D., Hotho, A.: Flow-based benchmark data sets for intrusion detection. In: Proceedings of the 16th European Conference on Cyber Warfare and Security. ACPI, pp. 361–369 (2017)
14.
go back to reference Sekar, R., et al.: Specification-based anomaly detection: a new approach for detecting network intrusions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 265–274. ACM (2002) Sekar, R., et al.: Specification-based anomaly detection: a new approach for detecting network intrusions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 265–274. ACM (2002)
15.
go back to reference Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116 (2018) Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116 (2018)
17.
go back to reference Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017) Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017)
18.
go back to reference Xu, S., Qian, Y., Hu, R.Q.: A semi-supervised learning approach for network anomaly detection in fog computing. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019) Xu, S., Qian, Y., Hu, R.Q.: A semi-supervised learning approach for network anomaly detection in fog computing. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)
Metadata
Title
Towards Network Anomaly Detection Using Graph Embedding
Authors
Qingsai Xiao
Jian Liu
Quiyun Wang
Zhengwei Jiang
Xuren Wang
Yepeng Yao
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_12