Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Towards Ontology-Guided Learning for Shepherding

Author : Benjamin Campbell

Published in: Shepherding UxVs for Human-Swarm Teaming

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shepherding offers an exciting application for machine learning research. Shepherding tasks are scalable in terms of both complexity and dimension. This scalability supports investigations into the generality of learned multi-agent solutions. Shepherding is also valuable for the study of how multi-agent learning systems transition from simulation to physical systems. This chapter reviews previous learning strategies for shepherding and highlights the advantages of applying prior knowledge to the design of learning systems for shepherding. It presents ontology guided learning, a hybrid learning approach to learning. Ontology guided learning will enable the application of symbolic prior knowledge to non-symbolic learning systems. This will allow a non-symbolic system to reason on abstract concepts, reduce dimensionality by partitioning the state and action space, increase transparency and allow learning to focus on the parametric rather than semantic parts of the problem, where it will likely be most effective. This chapter concludes by describing how ontology guided learning could be applied to the shepherding problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbass, H., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2001), vol. 2, pp. 971–978. IEEE Press, Piscataway (2001) Abbass, H., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2001), vol. 2, pp. 971–978. IEEE Press, Piscataway (2001)
2.
go back to reference Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)CrossRef Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)CrossRef
3.
go back to reference Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst. 13(1–2), 41–77 (2003)MathSciNetCrossRef Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst. 13(1–2), 41–77 (2003)MathSciNetCrossRef
4.
go back to reference Baumann, M., Büning, H.K.: Learning shepherding behavior. Ph.D. Thesis, University of Paderborn (2016) Baumann, M., Büning, H.K.: Learning shepherding behavior. Ph.D. Thesis, University of Paderborn (2016)
5.
go back to reference Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef
6.
go back to reference Brulé, J., Engel, K., Fung, N., Julien, I.: Evolving shepherding behavior with genetic programming algorithms (2016). Preprint arXiv:1603.06141 Brulé, J., Engel, K., Fung, N., Julien, I.: Evolving shepherding behavior with genetic programming algorithms (2016). Preprint arXiv:1603.06141
7.
go back to reference Bundy, A.: Why ontology evolution is essential in modeling scientific discovery. In: AAAI Fall Symposium: Automated Scientific Discovery, pp. 8–9 (2008) Bundy, A.: Why ontology evolution is essential in modeling scientific discovery. In: AAAI Fall Symposium: Automated Scientific Discovery, pp. 8–9 (2008)
8.
go back to reference Cai, C.H., Ke, D., Xu, Y., Su, K.: Symbolic manipulation based on deep neural networks and its application to axiom discovery. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2136–2143. IEEE, Piscataway (2017) Cai, C.H., Ke, D., Xu, Y., Su, K.: Symbolic manipulation based on deep neural networks and its application to axiom discovery. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2136–2143. IEEE, Piscataway (2017)
9.
go back to reference Dubey, R., Agrawal, P., Pathak, D., Griffiths, T.L., Efros, A.A.: Investigating human priors for playing video games (2018). Preprint arXiv:1802.10217 Dubey, R., Agrawal, P., Pathak, D., Griffiths, T.L., Efros, A.A.: Investigating human priors for playing video games (2018). Preprint arXiv:1802.10217
10.
go back to reference Garnelo, M., Arulkumaran, K., Shanahan, M.: Towards deep symbolic reinforcement learning (2016). Preprint arXiv:1609.05518 Garnelo, M., Arulkumaran, K., Shanahan, M.: Towards deep symbolic reinforcement learning (2016). Preprint arXiv:1609.05518
11.
go back to reference Go, C.K.C.: A reinforcement learning model of the shepherding task. Masters Thesis (2016) Go, C.K.C.: A reinforcement learning model of the shepherding task. Masters Thesis (2016)
12.
go back to reference Go, C.K., Lao, B., Yoshimoto, J., Ikeda, K.: A reinforcement learning approach to the shepherding task using SARSA. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3833–3836. IEEE, Piscataway (2016) Go, C.K., Lao, B., Yoshimoto, J., Ikeda, K.: A reinforcement learning approach to the shepherding task using SARSA. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3833–3836. IEEE, Piscataway (2016)
13.
go back to reference Gomes, J., Mariano, P., Christensen, A.L.: Cooperative coevolution of partially heterogeneous multiagent systems. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 297–305. International Foundation for Autonomous Agents and Multiagent Systems (2015) Gomes, J., Mariano, P., Christensen, A.L.: Cooperative coevolution of partially heterogeneous multiagent systems. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 297–305. International Foundation for Autonomous Agents and Multiagent Systems (2015)
14.
go back to reference Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time atari game play using offline monte-carlo tree search planning. In: Advances in Neural Information Processing Systems, pp. 3338–3346 (2014) Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time atari game play using offline monte-carlo tree search planning. In: Advances in Neural Information Processing Systems, pp. 3338–3346 (2014)
15.
go back to reference Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: Vizdoom: A doom-based AI research platform for visual reinforcement learning. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, Piscataway (2016) Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: Vizdoom: A doom-based AI research platform for visual reinforcement learning. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, Piscataway (2016)
16.
go back to reference Li, X., Bilbao, S., Martín-Wanton, T., Bastos, J., Rodriguez, J.: SWARMs ontology: a common information model for the cooperation of underwater robots. Sensors 17(3), 569 (2017)CrossRef Li, X., Bilbao, S., Martín-Wanton, T., Bastos, J., Rodriguez, J.: SWARMs ontology: a common information model for the cooperation of underwater robots. Sensors 17(3), 569 (2017)CrossRef
17.
go back to reference Linder, M.H., Nye, B.: Fitness, environment and input: Evolved robotic shepherding, pp. 1–8 (2010) Linder, M.H., Nye, B.: Fitness, environment and input: Evolved robotic shepherding, pp. 1–8 (2010)
18.
go back to reference Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016) Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)
19.
go back to reference Özdemir, A., Gauci, M., Groß, R.: Shepherding with robots that do not compute. In: Artificial Life Conference Proceedings 14, pp. 332–339. MIT Press, Cambridge (2017) Özdemir, A., Gauci, M., Groß, R.: Shepherding with robots that do not compute. In: Artificial Life Conference Proceedings 14, pp. 332–339. MIT Press, Cambridge (2017)
20.
go back to reference Pearce, G., Campbell, B., Perry, A., Sims, B., Zamani, M., Newby, L., Nesbitt, D., Bowering, G., Franklin, S., Hunjet, R.: An adaptive policy based control framework for land vehicle systems. In: International Conference on Intelligent Robotics and Applications, pp. 208–222. Springer, Berlin (2018) Pearce, G., Campbell, B., Perry, A., Sims, B., Zamani, M., Newby, L., Nesbitt, D., Bowering, G., Franklin, S., Hunjet, R.: An adaptive policy based control framework for land vehicle systems. In: International Conference on Intelligent Robotics and Applications, pp. 208–222. Springer, Berlin (2018)
21.
go back to reference Potter, M.A., Meeden, L.A., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 1337–1343. Citeseer (2001) Potter, M.A., Meeden, L.A., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 1337–1343. Citeseer (2001)
22.
go back to reference Rosa, L., Rodrigues, L., Lopes, A., Hiltunen, M., Schlichting, R.: Self-management of adaptable component-based applications. IEEE Trans. Softw. Eng. 39(3), 403–421 (2012)CrossRef Rosa, L., Rodrigues, L., Lopes, A., Hiltunen, M., Schlichting, R.: Self-management of adaptable component-based applications. IEEE Trans. Softw. Eng. 39(3), 403–421 (2012)CrossRef
23.
go back to reference Schultz, A., Grefenstette, J.J., Adams, W.: Roboshepherd: learning a complex behavior. Rob. Manuf. Recent Trends Res. Appl. 6, 763–768 (1996) Schultz, A., Grefenstette, J.J., Adams, W.: Roboshepherd: learning a complex behavior. Rob. Manuf. Recent Trends Res. Appl. 6, 763–768 (1996)
24.
go back to reference Shavlik, J.W.: Combining symbolic and neural learning. Mach. Learn. 14(3), 321–331 (1994) Shavlik, J.W.: Combining symbolic and neural learning. Mach. Learn. 14(3), 321–331 (1994)
25.
go back to reference Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)CrossRef Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)CrossRef
26.
go back to reference Smith, P., Hunjet, R., Aleti, A., Barca, J.C., et al.: Data transfer via UAV swarm behaviours: rule generation, evolution and learning. Aust. J. Telecommun. Digital Econ. 6(2), 35 (2018)CrossRef Smith, P., Hunjet, R., Aleti, A., Barca, J.C., et al.: Data transfer via UAV swarm behaviours: rule generation, evolution and learning. Aust. J. Telecommun. Digital Econ. 6(2), 35 (2018)CrossRef
27.
go back to reference Strömbom, D., Mann, R.P., Wilson, A.M., Hailes, S., Morton, A.J., Sumpter, D.J.T., King, A.J.: Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. Soc. Interf. 11(100) (2014). https://browzine.com/articles/52614503 Strömbom, D., Mann, R.P., Wilson, A.M., Hailes, S., Morton, A.J., Sumpter, D.J.T., King, A.J.: Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. Soc. Interf. 11(100) (2014). https://​browzine.​com/​articles/​52614503
28.
go back to reference Teng, T.H., Tan, A.H., Zurada, J.M.: Self-organizing neural networks integrating domain knowledge and reinforcement learning. IEEE Trans. Neur. Netw. Learn. Syst. 26(5), 889–902 (2015)MathSciNetCrossRef Teng, T.H., Tan, A.H., Zurada, J.M.: Self-organizing neural networks integrating domain knowledge and reinforcement learning. IEEE Trans. Neur. Netw. Learn. Syst. 26(5), 889–902 (2015)MathSciNetCrossRef
29.
go back to reference Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif. Intell. 70(1–2), 119–165 (1994)CrossRef Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif. Intell. 70(1–2), 119–165 (1994)CrossRef
30.
go back to reference Ulam, P., Goel, A., Jones, J., Murdock, W.: Using model-based reflection to guide reinforcement learning. In: Reasoning, Representation, and Learning in Computer Games, p. 107 (2005) Ulam, P., Goel, A., Jones, J., Murdock, W.: Using model-based reflection to guide reinforcement learning. In: Reasoning, Representation, and Learning in Computer Games, p. 107 (2005)
31.
go back to reference Wang, H.: ReNN: Rule-embedded neural networks (2018). Preprint arXiv:1801.09856 Wang, H.: ReNN: Rule-embedded neural networks (2018). Preprint arXiv:1801.09856
32.
go back to reference Wang, B.B., Mckay, R.I., Abbass, H.A., Barlow, M.: A comparative study for domain ontology guided feature extraction. In: Proceedings of the 26th Australasian Computer Science Conference-Volume 16, pp. 69–78. Australian Computer Society, Darlinghurst (2003) Wang, B.B., Mckay, R.I., Abbass, H.A., Barlow, M.: A comparative study for domain ontology guided feature extraction. In: Proceedings of the 26th Australasian Computer Science Conference-Volume 16, pp. 69–78. Australian Computer Society, Darlinghurst (2003)
33.
go back to reference Zhang, J., Silvescu, A., Honavar, V.: Ontology-driven induction of decision trees at multiple levels of abstraction. In: International Symposium on Abstraction, Reformulation, and Approximation, pp. 316–323. Springer, Berlin (2002) Zhang, J., Silvescu, A., Honavar, V.: Ontology-driven induction of decision trees at multiple levels of abstraction. In: International Symposium on Abstraction, Reformulation, and Approximation, pp. 316–323. Springer, Berlin (2002)
Metadata
Title
Towards Ontology-Guided Learning for Shepherding
Author
Benjamin Campbell
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60898-9_6

Premium Partner