Skip to main content
Top

2022 | OriginalPaper | Chapter

Towards Optimal Sampling for Learning Sparse Approximations in High Dimensions

Authors : Ben Adcock, Juan M. Cardenas, Nick Dexter, Sebastian Moraga

Published in: High-Dimensional Optimization and Probability

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we discuss recent work on learning sparse approximations to high-dimensional functions on data, where the target functions may be scalar-,’ vector- or even Hilbert space-valued. Our main objective is to study how the sampling strategy affects the sample complexity—that is, the number of samples that suffice for accurate and stable recovery—and to use this insight to obtain optimal or near-optimal sampling procedures. We consider two settings. First, when a target sparse representation is known, in which case we present a near-complete answer based on drawing independent random samples from carefully designed probability measures. Second, we consider the more challenging scenario when such representation is unknown. In this case, while not giving a full answer, we describe a general construction of sampling measures that improves over standard Monte Carlo sampling. We present examples using algebraic and trigonometric polynomials, and for the former, we also introduce a new procedure for function approximation on irregular (i.e. nontensorial) domains. The effectiveness of this procedure is shown through numerical examples. Finally, we discuss a number of structured sparsity models and how they may lead to better approximations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Adcock, Infinite-dimensional ℓ1 minimization and function approximation from pointwise data. Constr. Approx. 45(3), 343–390 (2017)MathSciNetCrossRef B. Adcock, Infinite-dimensional 1 minimization and function approximation from pointwise data. Constr. Approx. 45(3), 343–390 (2017)MathSciNetCrossRef
2.
3.
go back to reference B. Adcock, S. Brugiapaglia, Sparse approximation of multivariate functions from small datasets via weighted orthogonal matching pursuit, in Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, vol. 134 of Lect. Notes Comput. Sci. Eng., ed. by S. Sherwin, D. Moxey, J. Peiró, P. Vincent, C. Schwab (Springer, Cham, Switzerland, 2020), pp. 611–621CrossRef B. Adcock, S. Brugiapaglia, Sparse approximation of multivariate functions from small datasets via weighted orthogonal matching pursuit, in Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, vol. 134 of Lect. Notes Comput. Sci. Eng., ed. by S. Sherwin, D. Moxey, J. Peiró, P. Vincent, C. Schwab (Springer, Cham, Switzerland, 2020), pp. 611–621CrossRef
4.
go back to reference B. Adcock, J.M. Cardenas, Near-optimal sampling strategies for multivariate function approximation on general domains. SIAM J. Math. Data Sci. 2(3), 607–630 (2020)MathSciNetMATHCrossRef B. Adcock, J.M. Cardenas, Near-optimal sampling strategies for multivariate function approximation on general domains. SIAM J. Math. Data Sci. 2(3), 607–630 (2020)MathSciNetMATHCrossRef
5.
go back to reference B. Adcock, A.C. Hansen, Compressive Imaging: Structure, Sampling, Learning (Cambridge University Press, Cambridge, UK, 2021)MATHCrossRef B. Adcock, A.C. Hansen, Compressive Imaging: Structure, Sampling, Learning (Cambridge University Press, Cambridge, UK, 2021)MATHCrossRef
6.
7.
go back to reference B. Adcock, Y. Sui, Compressive Hermite interpolation: sparse, high-dimensional approximation from gradient-augmented measurements. Constr. Approx. 50, 167–207 (2019)MathSciNetMATHCrossRef B. Adcock, Y. Sui, Compressive Hermite interpolation: sparse, high-dimensional approximation from gradient-augmented measurements. Constr. Approx. 50, 167–207 (2019)MathSciNetMATHCrossRef
8.
go back to reference B. Adcock, S. Brugiapaglia, C.G. Webster, Compressed sensing approaches for polynomial approximation of high-dimensional functions, in Compressed Sensing and its Applications: Second International MATHEON Conference 2015, Appl. Numer. Harmon. Anal., ed. by H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, R. Mathar (Birkhäuser, Cham, Switzerland, 2017), pp. 93–124CrossRef B. Adcock, S. Brugiapaglia, C.G. Webster, Compressed sensing approaches for polynomial approximation of high-dimensional functions, in Compressed Sensing and its Applications: Second International MATHEON Conference 2015, Appl. Numer. Harmon. Anal., ed. by H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, R. Mathar (Birkhäuser, Cham, Switzerland, 2017), pp. 93–124CrossRef
9.
go back to reference B. Adcock, A. Bao, J. D. Jakeman, A. Narayan, Compressed sensing with sparse corruptions: fault-tolerant sparse collocation approximations. SIAM/ASA J. Uncertain. Quantif. 6(4), 1424–1453 (2018)MathSciNetMATHCrossRef B. Adcock, A. Bao, J. D. Jakeman, A. Narayan, Compressed sensing with sparse corruptions: fault-tolerant sparse collocation approximations. SIAM/ASA J. Uncertain. Quantif. 6(4), 1424–1453 (2018)MathSciNetMATHCrossRef
10.
go back to reference B. Adcock, A. Bao, S. Brugiapaglia, Correcting for unknown errors in sparse high-dimensional function approximation. Numer. Math. 142(3), 667–711 (2019)MathSciNetMATHCrossRef B. Adcock, A. Bao, S. Brugiapaglia, Correcting for unknown errors in sparse high-dimensional function approximation. Numer. Math. 142(3), 667–711 (2019)MathSciNetMATHCrossRef
11.
go back to reference B. Adcock, S. Brugiapaglia, N. Dexter, S. Moraga, Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data, in Proceedings of The Second Annual Conference on Mathematical and Scientific Machine Learning, vol. 145 of Proc. Mach. Learn. Res. (PMLR), ed. by J. Bruna, J. S. Hesthaven, L. Zdeborová (PMLR, 2021), pp. 1–36 B. Adcock, S. Brugiapaglia, N. Dexter, S. Moraga, Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data, in Proceedings of The Second Annual Conference on Mathematical and Scientific Machine Learning, vol. 145 of Proc. Mach. Learn. Res. (PMLR), ed. by J. Bruna, J. S. Hesthaven, L. Zdeborová (PMLR, 2021), pp. 1–36
12.
go back to reference B. Adcock, S. Brugiapaglia, N. Dexter, S. Moraga, On efficient algorithms for computing near-optimal polynomial approximations of smooth, high-dimensional Hilbert-valued functions from sample values. In Preparation (2021) B. Adcock, S. Brugiapaglia, N. Dexter, S. Moraga, On efficient algorithms for computing near-optimal polynomial approximations of smooth, high-dimensional Hilbert-valued functions from sample values. In Preparation (2021)
13.
go back to reference B. Adcock, S. Brugiapaglia, C.G. Webster, Sparse Polynomial Approximation of High-Dimensional Functions (Comput. Sci. Eng. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2022)MATHCrossRef B. Adcock, S. Brugiapaglia, C.G. Webster, Sparse Polynomial Approximation of High-Dimensional Functions (Comput. Sci. Eng. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2022)MATHCrossRef
14.
go back to reference N. Alemazkoor, H. Meidani, Divide and conquer: an incremental sparsity promoting compressive sampling approach for polynomial chaos expansions. Comput. Methods Appl. Mech. Eng. 318, 937–956 (2017)MathSciNetMATHCrossRef N. Alemazkoor, H. Meidani, Divide and conquer: an incremental sparsity promoting compressive sampling approach for polynomial chaos expansions. Comput. Methods Appl. Mech. Eng. 318, 937–956 (2017)MathSciNetMATHCrossRef
15.
go back to reference N. Alemazkoor, H. Meidani, A near-optimal sampling strategy for sparse recovery of polynomial chaos expansions. J. Comput. Phys. 371, 137–151 (2018)MathSciNetMATHCrossRef N. Alemazkoor, H. Meidani, A near-optimal sampling strategy for sparse recovery of polynomial chaos expansions. J. Comput. Phys. 371, 137–151 (2018)MathSciNetMATHCrossRef
16.
go back to reference B. Arras, M. Bachmayr, A. Cohen, Sequential sampling for optimal weighted least squares approximations in hierarchical spaces. SIAM J. Math. Data Sci. 1(1), 189–207 (2019)MathSciNetMATHCrossRef B. Arras, M. Bachmayr, A. Cohen, Sequential sampling for optimal weighted least squares approximations in hierarchical spaces. SIAM J. Math. Data Sci. 1(1), 189–207 (2019)MathSciNetMATHCrossRef
17.
go back to reference J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, in Spectral and High Order Methods for Partial Differential Equations, vol. 76 of Lect. Notes Comput. Sci. Eng., ed. by J.S. Hesthaven, E.M. Rønquist (Springer, Berlin, Heidelberg, Germany, 2011), pp. 43–62CrossRef J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, in Spectral and High Order Methods for Partial Differential Equations, vol. 76 of Lect. Notes Comput. Sci. Eng., ed. by J.S. Hesthaven, E.M. Rønquist (Springer, Berlin, Heidelberg, Germany, 2011), pp. 43–62CrossRef
18.
go back to reference G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230, 2345–2367 (2011)MathSciNetMATHCrossRef G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230, 2345–2367 (2011)MathSciNetMATHCrossRef
19.
go back to reference J.-L. Bouchot, H. Rauhut, C. Schwab, Multi-level compressed sensing Petrov-Galerkin discretization of high-dimensional parametric PDEs (2017). arXiv:1701.01671 J.-L. Bouchot, H. Rauhut, C. Schwab, Multi-level compressed sensing Petrov-Galerkin discretization of high-dimensional parametric PDEs (2017). arXiv:1701.01671
20.
go back to reference S. Brugiapaglia, S. Dirksen, H.C. Jung, H. Rauhut, Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs. Appl. Comput. Harmon. Anal. 53, 231–269 (2021)MathSciNetMATHCrossRef S. Brugiapaglia, S. Dirksen, H.C. Jung, H. Rauhut, Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs. Appl. Comput. Harmon. Anal. 53, 231–269 (2021)MathSciNetMATHCrossRef
21.
go back to reference A. Chkifa, A. Cohen, R. DeVore, C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM. Math. Model. Numer. Anal. 47(1), 253–280 (2013)MathSciNetMATHCrossRef A. Chkifa, A. Cohen, R. DeVore, C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM. Math. Model. Numer. Anal. 47(1), 253–280 (2013)MathSciNetMATHCrossRef
22.
go back to reference A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)MathSciNetMATHCrossRef A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)MathSciNetMATHCrossRef
23.
go back to reference A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, R. Tempone, Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDEs. ESAIM. Math. Model. Numer. Anal. 49(3), 815–837 (2015)MathSciNetMATHCrossRef A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, R. Tempone, Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDEs. ESAIM. Math. Model. Numer. Anal. 49(3), 815–837 (2015)MathSciNetMATHCrossRef
24.
go back to reference A. Chkifa, A. Cohen, C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103, 400–428 (2015)MathSciNetMATHCrossRef A. Chkifa, A. Cohen, C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103, 400–428 (2015)MathSciNetMATHCrossRef
25.
go back to reference A. Chkifa, N. Dexter, H. Tran, C.G. Webster, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comput. 87(311), 1415–1450 (2018)MathSciNetMATHCrossRef A. Chkifa, N. Dexter, H. Tran, C.G. Webster, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comput. 87(311), 1415–1450 (2018)MathSciNetMATHCrossRef
26.
go back to reference B. Choi, M.A. Iwen, F. Krahmer, Sparse harmonic transforms: A new class of sublinear-time algorithms for learning functions of many variables. Found. Comput. Math. 21(2), 275–329 (2021)MathSciNetMATHCrossRef B. Choi, M.A. Iwen, F. Krahmer, Sparse harmonic transforms: A new class of sublinear-time algorithms for learning functions of many variables. Found. Comput. Math. 21(2), 275–329 (2021)MathSciNetMATHCrossRef
27.
go back to reference O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. (Appl. Numer. Harmon. Anal. Birkhäuser, Basel, Switzerland, 2016) O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. (Appl. Numer. Harmon. Anal. Birkhäuser, Basel, Switzerland, 2016)
29.
go back to reference A. Cohen, M. Dolbeault, Optimal pointwise sampling for L2 approximation (2021). arXiv:2105.05545 A. Cohen, M. Dolbeault, Optimal pointwise sampling for L2 approximation (2021). arXiv:2105.05545
31.
go back to reference A. Cohen, G. Migliorati, Multivariate approximation in downward closed polynomial spaces, in Contemporary Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan, ed. by J. Dick, F.Y. Kuo, H. Woźniakowski (Springer, Cham, Switzerland, 2018), pp. 233–282CrossRef A. Cohen, G. Migliorati, Multivariate approximation in downward closed polynomial spaces, in Contemporary Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan, ed. by J. Dick, F.Y. Kuo, H. Woźniakowski (Springer, Cham, Switzerland, 2018), pp. 233–282CrossRef
32.
go back to reference A. Cohen, R.A. DeVore, C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011) A. Cohen, R.A. DeVore, C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011)
33.
go back to reference A. Cohen, M.A. Davenport, D. Leviatan, On the stability and accuracy of least squares approximations. Found. Comput. Math. 13, 819–834 (2013)MathSciNetMATHCrossRef A. Cohen, M.A. Davenport, D. Leviatan, On the stability and accuracy of least squares approximations. Found. Comput. Math. 13, 819–834 (2013)MathSciNetMATHCrossRef
34.
go back to reference A. Cohen, G. Migliorati, F. Nobile, Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension. Constr. Approx. 45, 497–519 (2017)MathSciNetMATHCrossRef A. Cohen, G. Migliorati, F. Nobile, Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension. Constr. Approx. 45, 497–519 (2017)MathSciNetMATHCrossRef
35.
go back to reference D. Dũng, V. Temlyakov, T. Ullrich, Hyperbolic Cross Approximation. Adv. Courses Math. CRM Barcelona (Birkhäuser, Basel, Switzerland, 2018) D. Dũng, V. Temlyakov, T. Ullrich, Hyperbolic Cross Approximation. Adv. Courses Math. CRM Barcelona (Birkhäuser, Basel, Switzerland, 2018)
36.
go back to reference N. Dexter, H. Tran, C. Webster, A mixed ℓ1 regularization approach for sparse simultaneous approximation of parameterized PDEs. ESAIM. Math. Model. Numer. Anal. 53, 2025–2045 (2019)MathSciNetMATHCrossRef N. Dexter, H. Tran, C. Webster, A mixed 1 regularization approach for sparse simultaneous approximation of parameterized PDEs. ESAIM. Math. Model. Numer. Anal. 53, 2025–2045 (2019)MathSciNetMATHCrossRef
37.
go back to reference P. Diaz, A. Doostan, J. Hampton, Sparse polynomial chaos expansions via compressed sensing and D-optimal design. Comput. Methods Appl. Mech. Eng. 336, 640–666 (2018)MathSciNetMATHCrossRef P. Diaz, A. Doostan, J. Hampton, Sparse polynomial chaos expansions via compressed sensing and D-optimal design. Comput. Methods Appl. Mech. Eng. 336, 640–666 (2018)MathSciNetMATHCrossRef
38.
go back to reference M. Dolbeault, A. Cohen, Optimal sampling and Christoffel functions on general domains (2020). arXiv:2010.11040 M. Dolbeault, A. Cohen, Optimal sampling and Christoffel functions on general domains (2020). arXiv:2010.11040
39.
go back to reference A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)MathSciNetMATHCrossRef A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)MathSciNetMATHCrossRef
40.
go back to reference O.G. Ernst, A. Mugler, H.-J. Starkloff, E. Ullmann, On the convergence of generalized polynomial chaos expansions. ESAIM. Math. Model. Numer. Anal. 46(2), 317–339 (2012)MathSciNetMATHCrossRef O.G. Ernst, A. Mugler, H.-J. Starkloff, E. Ullmann, On the convergence of generalized polynomial chaos expansions. ESAIM. Math. Model. Numer. Anal. 46(2), 317–339 (2012)MathSciNetMATHCrossRef
41.
go back to reference N. Fajraoui, S. Marelli, B. Sudret, Sequential design of experiment for sparse polynomial chaos expansions. SIAM/ASA J. Uncertain. Quantif. 5(1), 1061–1085 (2017)MathSciNetMATHCrossRef N. Fajraoui, S. Marelli, B. Sudret, Sequential design of experiment for sparse polynomial chaos expansions. SIAM/ASA J. Uncertain. Quantif. 5(1), 1061–1085 (2017)MathSciNetMATHCrossRef
42.
go back to reference R. Ghanem, D. Higdon, H. Owhadi, (eds.), Handbook of Uncertainty Quantification (Springer, Switzerland, 2017)MATH R. Ghanem, D. Higdon, H. Owhadi, (eds.), Handbook of Uncertainty Quantification (Springer, Switzerland, 2017)MATH
43.
go back to reference L. Guo, Y. Liu, L. Yan, Sparse recovery via ℓq-minimization for polynomial chaos expansions. Numer. Math. Theor. Meth. Appl. 10(4), 775–797 (2017)MathSciNetMATHCrossRef L. Guo, Y. Liu, L. Yan, Sparse recovery via q-minimization for polynomial chaos expansions. Numer. Math. Theor. Meth. Appl. 10(4), 775–797 (2017)MathSciNetMATHCrossRef
44.
go back to reference L. Guo, A. Narayan, T. Zhou, Y. Chen, Stochastic collocation methods via ℓ1 minimization using randomized quadratures. SIAM J. Sci. Comput. 39(1), A333–A359 (2017)MathSciNetMATHCrossRef L. Guo, A. Narayan, T. Zhou, Y. Chen, Stochastic collocation methods via 1 minimization using randomized quadratures. SIAM J. Sci. Comput. 39(1), A333–A359 (2017)MathSciNetMATHCrossRef
45.
go back to reference L. Guo, A. Narayan, T. Zhou, A gradient enhanced ℓ1-minimization for sparse approximation of polynomial chaos expansions. J. Comput. Phys. 367, 49–64 (2018)MathSciNetMATHCrossRef L. Guo, A. Narayan, T. Zhou, A gradient enhanced 1-minimization for sparse approximation of polynomial chaos expansions. J. Comput. Phys. 367, 49–64 (2018)MathSciNetMATHCrossRef
47.
go back to reference C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares (2019). arXiv:1912.07075 C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares (2019). arXiv:1912.07075
48.
go back to reference M. Hadigol, A. Doostan, Least squares polynomial chaos expansion: a review of sampling strategies. Comput. Methods Appl. Mech. Eng. 332, 382–407 (2018)MathSciNetMATHCrossRef M. Hadigol, A. Doostan, Least squares polynomial chaos expansion: a review of sampling strategies. Comput. Methods Appl. Mech. Eng. 332, 382–407 (2018)MathSciNetMATHCrossRef
49.
go back to reference J. Hampton, A. Doostan, Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput. Methods Appl. Mech. Eng. 290, 73–97 (2015)MathSciNetMATHCrossRef J. Hampton, A. Doostan, Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput. Methods Appl. Mech. Eng. 290, 73–97 (2015)MathSciNetMATHCrossRef
50.
go back to reference J. Hampton, A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies. J. Comput. Phys. 280, 363–386 (2015)MathSciNetMATHCrossRef J. Hampton, A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies. J. Comput. Phys. 280, 363–386 (2015)MathSciNetMATHCrossRef
51.
go back to reference J. Hampton, A. Doostan, Compressive sampling methods for sparse polynomial chaos expansions, in Handbook of Uncertainty Quantification, ed. by R. Ghanem, D. Higdon, H. Owhadi (Springer, Cham, Switzerland, 2017), pp. 827–855CrossRef J. Hampton, A. Doostan, Compressive sampling methods for sparse polynomial chaos expansions, in Handbook of Uncertainty Quantification, ed. by R. Ghanem, D. Higdon, H. Owhadi (Springer, Cham, Switzerland, 2017), pp. 827–855CrossRef
52.
53.
go back to reference M. Hansen, C. Schwab, Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Math. Nachr. 286(8–9), 832–860 (2013)MathSciNetMATHCrossRef M. Hansen, C. Schwab, Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Math. Nachr. 286(8–9), 832–860 (2013)MathSciNetMATHCrossRef
54.
go back to reference A. Hashemi, H. Schaeffer, R. Shi, U. Topcu, G. Tran, R. Ward, Generalization bounds for sparse random feature expansions (2021). arXiv:2103.03191 A. Hashemi, H. Schaeffer, R. Shi, U. Topcu, G. Tran, R. Ward, Generalization bounds for sparse random feature expansions (2021). arXiv:2103.03191
55.
go back to reference L.S.T. Ho, H. Schaeffer, G. Tran, R. Ward, Recovery guarantees for polynomial coefficients from weakly dependent data with outliers. J. Approx. Theory 259, 105472 (2020)MathSciNetMATHCrossRef L.S.T. Ho, H. Schaeffer, G. Tran, R. Ward, Recovery guarantees for polynomial coefficients from weakly dependent data with outliers. J. Approx. Theory 259, 105472 (2020)MathSciNetMATHCrossRef
56.
go back to reference V.H. Hoang, C. Schwab, Regularity and generalized polynomial chaos approximation of parametric and random second-order hyperbolic partial differential equations. Anal. Appl. (Singap.) 10(3), 295–326 (2012) V.H. Hoang, C. Schwab, Regularity and generalized polynomial chaos approximation of parametric and random second-order hyperbolic partial differential equations. Anal. Appl. (Singap.) 10(3), 295–326 (2012)
57.
go back to reference J.D. Jakeman, M.S. Eldred, K. Sargsyan, Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection. J. Comput. Phys. 289, 18–34 (2015)MathSciNetMATHCrossRef J.D. Jakeman, M.S. Eldred, K. Sargsyan, Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection. J. Comput. Phys. 289, 18–34 (2015)MathSciNetMATHCrossRef
58.
go back to reference J.D. Jakeman, A. Narayan, T. Zhou, A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions. SIAM J. Sci. Comput. 39(3), A1114–A1144 (2017)MathSciNetMATHCrossRef J.D. Jakeman, A. Narayan, T. Zhou, A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions. SIAM J. Sci. Comput. 39(3), A1114–A1144 (2017)MathSciNetMATHCrossRef
59.
go back to reference J.D. Jakeman, F. Franzelin, A. Narayan, M. Eldred, D. Plüger, Polynomial chaos expansions for dependent random variables. Comput. Methods Appl. Mech. Eng. 351, 643–666 (2019)MathSciNetMATHCrossRef J.D. Jakeman, F. Franzelin, A. Narayan, M. Eldred, D. Plüger, Polynomial chaos expansions for dependent random variables. Comput. Methods Appl. Mech. Eng. 351, 643–666 (2019)MathSciNetMATHCrossRef
60.
go back to reference I.A. Kougioumtzoglou, I. Petromichelakis, A.F. Psaros, Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications. Probabilistic Eng. Mech. 61, 103082 (2020)CrossRef I.A. Kougioumtzoglou, I. Petromichelakis, A.F. Psaros, Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications. Probabilistic Eng. Mech. 61, 103082 (2020)CrossRef
61.
go back to reference O. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Sci. Comput. (Springer, Dordrecht, Netherlands, 2010) O. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Sci. Comput. (Springer, Dordrecht, Netherlands, 2010)
62.
go back to reference Y. Liu, L. Guo, Stochastic collocation via l1-minimisation on low discrepancy point sets with application to uncertainty quantification. East Asian J. Appl. Math. 6(2), 171–191 (2016)MathSciNetMATHCrossRef Y. Liu, L. Guo, Stochastic collocation via l1-minimisation on low discrepancy point sets with application to uncertainty quantification. East Asian J. Appl. Math. 6(2), 171–191 (2016)MathSciNetMATHCrossRef
63.
go back to reference N. Lüthen, S. Marelli, B. Sudret, Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications (2021). arXiv:2009.04800 N. Lüthen, S. Marelli, B. Sudret, Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications (2021). arXiv:2009.04800
64.
go back to reference N. Lüthen, S. Marelli, B. Sudret, Sparse polynomial chaos expansions: Literature survey and benchmark. SIAM/ASA J. Uncertain. Quantif. 9(2), 593–649 (2021)MathSciNetMATHCrossRef N. Lüthen, S. Marelli, B. Sudret, Sparse polynomial chaos expansions: Literature survey and benchmark. SIAM/ASA J. Uncertain. Quantif. 9(2), 593–649 (2021)MathSciNetMATHCrossRef
65.
go back to reference L. Mathelin, K.A. Gallivan, A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012)MathSciNetMATHCrossRef L. Mathelin, K.A. Gallivan, A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012)MathSciNetMATHCrossRef
66.
go back to reference G. Migliorati, Polynomial approximation by means of the random discrete L2 projection and application to inverse problems for PDEs with stochastic data, PhD thesis, Politecnico di Milano, 2013 G. Migliorati, Polynomial approximation by means of the random discrete L2 projection and application to inverse problems for PDEs with stochastic data, PhD thesis, Politecnico di Milano, 2013
67.
68.
go back to reference G. Migliorati, Multivariate approximation of functions on irregular domains by weighted least-squares methods. IMA J. Numer. Anal. 41(2), 1293–1317 (2021)MathSciNetMATHCrossRef G. Migliorati, Multivariate approximation of functions on irregular domains by weighted least-squares methods. IMA J. Numer. Anal. 41(2), 1293–1317 (2021)MathSciNetMATHCrossRef
69.
go back to reference G. Migliorati, F. Nobile, Analysis of discrete least squares on multivariate polynomial spaces with evaluations in low-discrepancy point sets. J. Complexity 31, 517–542 (2015)MathSciNetMATHCrossRef G. Migliorati, F. Nobile, Analysis of discrete least squares on multivariate polynomial spaces with evaluations in low-discrepancy point sets. J. Complexity 31, 517–542 (2015)MathSciNetMATHCrossRef
70.
go back to reference G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Analysis of the discrete L2 projection on polynomial spaces with random evaluations. Found. Comput. Math. 14, 419–456 (2014)MathSciNetMATH G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Analysis of the discrete L2 projection on polynomial spaces with random evaluations. Found. Comput. Math. 14, 419–456 (2014)MathSciNetMATH
71.
72.
73.
go back to reference A. Narayan, J.D. Jakeman, T. Zhou, A Christoffel function weighted least squares algorithm for collocation approximations. Math. Comput. 86, 1913–1947 (2017)MathSciNetMATHCrossRef A. Narayan, J.D. Jakeman, T. Zhou, A Christoffel function weighted least squares algorithm for collocation approximations. Math. Comput. 86, 1913–1947 (2017)MathSciNetMATHCrossRef
74.
go back to reference L.W.-T. Ng, M. Eldred, Multifidelity uncertainty quantification using nonintrusive polynomial chaos and stochastic collocation, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 45 (AIAA, 2012) L.W.-T. Ng, M. Eldred, Multifidelity uncertainty quantification using nonintrusive polynomial chaos and stochastic collocation, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 45 (AIAA, 2012)
75.
go back to reference J. Peng, J. Hampton, A. Doostan, A weighted ℓ1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)MathSciNetMATHCrossRef J. Peng, J. Hampton, A. Doostan, A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)MathSciNetMATHCrossRef
76.
go back to reference J. Peng, J. Hampton, A. Doostan, On polynomial chaos expansion via gradient-enhanced l1-minimization. J. Comput. Phys. 310, 440–458 (2016)MathSciNetMATHCrossRef J. Peng, J. Hampton, A. Doostan, On polynomial chaos expansion via gradient-enhanced l1-minimization. J. Comput. Phys. 310, 440–458 (2016)MathSciNetMATHCrossRef
77.
go back to reference G. Plonka, D. Potts, G. Steidl, M. Tasche, Numerical Fourier Analysis. Appl. Numer. Harmon. Anal. (Birkhäuser, Cham, Switzerland, 2018) G. Plonka, D. Potts, G. Steidl, M. Tasche, Numerical Fourier Analysis. Appl. Numer. Harmon. Anal. (Birkhäuser, Cham, Switzerland, 2018)
78.
go back to reference H. Rauhut, C. Schwab, Compressive sensing Petrov-Galerkin approximation of high dimensional parametric operator equations. Math. Comput. 86, 661–700 (2017)MathSciNetMATHCrossRef H. Rauhut, C. Schwab, Compressive sensing Petrov-Galerkin approximation of high dimensional parametric operator equations. Math. Comput. 86, 661–700 (2017)MathSciNetMATHCrossRef
81.
go back to reference Y. Shin, D. Xiu, Correcting data corruption errors for multivariate function approximation. SIAM J. Sci. Comput. 38(4), A2492–A2511 (2016)MathSciNetMATHCrossRef Y. Shin, D. Xiu, Correcting data corruption errors for multivariate function approximation. SIAM J. Sci. Comput. 38(4), A2492–A2511 (2016)MathSciNetMATHCrossRef
82.
go back to reference Y. Shin, D. Xiu, Nonadaptive quasi-optimal points selection for least squares linear regression. SIAM J. Sci. Comput. 38(1), A385–A411 (2016)MathSciNetMATHCrossRef Y. Shin, D. Xiu, Nonadaptive quasi-optimal points selection for least squares linear regression. SIAM J. Sci. Comput. 38(1), A385–A411 (2016)MathSciNetMATHCrossRef
83.
go back to reference R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications (Comput. Sci. Eng. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013) R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications (Comput. Sci. Eng. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013)
84.
go back to reference C. Soize, R. Ghanem, Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)MathSciNetMATHCrossRef C. Soize, R. Ghanem, Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)MathSciNetMATHCrossRef
85.
go back to reference T.J. Sullivan, Introduction to Uncertainty Quantification, vol. 63 of Texts Appl. Math. (Springer, Cham, Switzerland, 2015) T.J. Sullivan, Introduction to Uncertainty Quantification, vol. 63 of Texts Appl. Math. (Springer, Cham, Switzerland, 2015)
86.
go back to reference G. Tang, Methods for high dimensional uncertainty quantification: regularization, sensitivity analysis, and derivative enhancement, PhD thesis, Stanford University, 2013 G. Tang, Methods for high dimensional uncertainty quantification: regularization, sensitivity analysis, and derivative enhancement, PhD thesis, Stanford University, 2013
87.
go back to reference G. Tang, G. Iaccarino, Subsampled Gauss quadrature nodes for estimating polynomial chaos expansions. SIAM/ASA J. Uncertain. Quantif. 2(1), 423–443 (2014)MathSciNetMATHCrossRef G. Tang, G. Iaccarino, Subsampled Gauss quadrature nodes for estimating polynomial chaos expansions. SIAM/ASA J. Uncertain. Quantif. 2(1), 423–443 (2014)MathSciNetMATHCrossRef
88.
go back to reference T. Tang, T. Zhou, On discrete least-squares projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification. SIAM J. Sci. Comput. 36(5), A2272–A2295 (2014)MathSciNetMATHCrossRef T. Tang, T. Zhou, On discrete least-squares projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification. SIAM J. Sci. Comput. 36(5), A2272–A2295 (2014)MathSciNetMATHCrossRef
89.
go back to reference V. Temlyakov, Multivariate Approximation, vol. 32 (Cambridge University Press, 2018) V. Temlyakov, Multivariate Approximation, vol. 32 (Cambridge University Press, 2018)
90.
go back to reference H. Tran, C. Webster, Analysis of sparse recovery for Legendre expansions using envelope bound (2018). arXiv:1810.02926 H. Tran, C. Webster, Analysis of sparse recovery for Legendre expansions using envelope bound (2018). arXiv:1810.02926
91.
go back to reference H. Tran, C. Webster, A class of null space conditions for sparse recovery via nonconvex, non-separable minimizations. Results Appl. Math. 3, 100011 (2019)MathSciNetMATHCrossRef H. Tran, C. Webster, A class of null space conditions for sparse recovery via nonconvex, non-separable minimizations. Results Appl. Math. 3, 100011 (2019)MathSciNetMATHCrossRef
92.
go back to reference H. Tran, C.G. Webster, G. Zhang, Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137(2), 451–493 (2017)MathSciNetMATHCrossRef H. Tran, C.G. Webster, G. Zhang, Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137(2), 451–493 (2017)MathSciNetMATHCrossRef
94.
go back to reference P. Tsilifis, X. Huan, C. Safta, K. Sargsyan, G. Lacaze, J.C. Oefelein, H.N. Najm, R.G. Ghanem, Compressive sensing adaptation for polynomial chaos expansions. J. Comput. Phys. 380, 29–47 (2019)MathSciNetMATHCrossRef P. Tsilifis, X. Huan, C. Safta, K. Sargsyan, G. Lacaze, J.C. Oefelein, H.N. Najm, R.G. Ghanem, Compressive sensing adaptation for polynomial chaos expansions. J. Comput. Phys. 380, 29–47 (2019)MathSciNetMATHCrossRef
95.
go back to reference Z. Xu, T. Zhou, On sparse interpolation and the design of deterministic interpolation points. SIAM J. Sci. Comput. 36(4), 1752–1769 (2014)MathSciNetMATHCrossRef Z. Xu, T. Zhou, On sparse interpolation and the design of deterministic interpolation points. SIAM J. Sci. Comput. 36(4), 1752–1769 (2014)MathSciNetMATHCrossRef
96.
go back to reference Y. Xu, A. Narayan, H. Tran, C. Webster, Analysis of the ratio of ℓ1 and ℓ2 norms in compressed sensing (2020). arXiv:2004.05873 Y. Xu, A. Narayan, H. Tran, C. Webster, Analysis of the ratio of 1 and 2 norms in compressed sensing (2020). arXiv:2004.05873
97.
go back to reference L. Yan, L. Guo, D. Xiu, Stochastic collocation algorithms using ℓ1-minimization. Int. J. Uncertain. Quantif. 2(3), 279–293 (2012)MathSciNetMATHCrossRef L. Yan, L. Guo, D. Xiu, Stochastic collocation algorithms using 1-minimization. Int. J. Uncertain. Quantif. 2(3), 279–293 (2012)MathSciNetMATHCrossRef
98.
go back to reference L. Yan, Y. Shin, D. Xiu, Sparse approximation using ℓ1 − ℓ2 minimization and its application to stochastic collocation. SIAM J. Sci. Comput. 39(1), A229–A254 (2017)MathSciNetMATHCrossRef L. Yan, Y. Shin, D. Xiu, Sparse approximation using 1 − 2 minimization and its application to stochastic collocation. SIAM J. Sci. Comput. 39(1), A229–A254 (2017)MathSciNetMATHCrossRef
99.
go back to reference X. Yang, G.E. Karniadakis, Reweighted ℓ1 minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248, 87–108 (2013)MATHCrossRef X. Yang, G.E. Karniadakis, Reweighted 1 minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248, 87–108 (2013)MATHCrossRef
100.
go back to reference X. Yang, H. Lei, N.A. Baker, G. Lin, Enhancing sparsity of Hermite polynomial expansions by iterative rotations. J. Comput. Phys. 307, 94–109 (2016)MathSciNetMATHCrossRef X. Yang, H. Lei, N.A. Baker, G. Lin, Enhancing sparsity of Hermite polynomial expansions by iterative rotations. J. Comput. Phys. 307, 94–109 (2016)MathSciNetMATHCrossRef
101.
go back to reference X. Yang, W. Li, A. Tartakovsky, Sliced-inverse-regression–aided rotated compressive sensing method for uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 6(4), 1532–1554 (2018)MathSciNetMATHCrossRef X. Yang, W. Li, A. Tartakovsky, Sliced-inverse-regression–aided rotated compressive sensing method for uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 6(4), 1532–1554 (2018)MathSciNetMATHCrossRef
102.
go back to reference X. Yang, X. Wan, L. Lin, H. Lei, A general framework for enhancing sparsity of generalized polynomial chaos expansions. Int. J. Uncertain. Quantif. 9(3), 221–243 (2019)MathSciNetCrossRef X. Yang, X. Wan, L. Lin, H. Lei, A general framework for enhancing sparsity of generalized polynomial chaos expansions. Int. J. Uncertain. Quantif. 9(3), 221–243 (2019)MathSciNetCrossRef
103.
go back to reference S. Zein, B. Colson, F. Glineur, An efficient sampling method for regression-based polynomial chaos expansion. Commun. Comput. Phys. 13(4), 1173–1188 (2013)MathSciNetMATHCrossRef S. Zein, B. Colson, F. Glineur, An efficient sampling method for regression-based polynomial chaos expansion. Commun. Comput. Phys. 13(4), 1173–1188 (2013)MathSciNetMATHCrossRef
104.
go back to reference T. Zhou, A. Narayan, Z. Xu, Multivariate discrete least-squares approximations with a new type of collocation grid. SIAM J. Sci. Comput. 36(5), A2401–A2422 (2014)MathSciNetMATHCrossRef T. Zhou, A. Narayan, Z. Xu, Multivariate discrete least-squares approximations with a new type of collocation grid. SIAM J. Sci. Comput. 36(5), A2401–A2422 (2014)MathSciNetMATHCrossRef
105.
go back to reference T. Zhou, A. Narayan, D. Xiu, Weighted discrete least-squares polynomial approximation using randomized quadratures. J. Comput. Phys. 298, 787–800 (2015)MathSciNetMATHCrossRef T. Zhou, A. Narayan, D. Xiu, Weighted discrete least-squares polynomial approximation using randomized quadratures. J. Comput. Phys. 298, 787–800 (2015)MathSciNetMATHCrossRef
Metadata
Title
Towards Optimal Sampling for Learning Sparse Approximations in High Dimensions
Authors
Ben Adcock
Juan M. Cardenas
Nick Dexter
Sebastian Moraga
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-031-00832-0_2