Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Towards Prediction of Heart Arrhythmia Onset Using Machine Learning

Authors : Agnieszka Kitlas Golińska, Wojciech Lesiński, Andrzej Przybylski, Witold R. Rudnicki

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Current study aims at prediction of the onset of malignant cardiac arrhythmia in patients with Implantable Cardioverter-Defibrillators (ICDs) using Machine Learning algorithms. The input data consisted of 184 signals of RR-intervals from 29 patients with ICD, recorded both during normal heartbeat and arrhythmia. For every signal we generated 47 descriptors with different signal analysis methods. Then, we performed feature selection using several methods and used selected feature for building predictive models with the help of Random Forest algorithm. Entire modelling procedure was performed within 5-fold cross-validation procedure that was repeated 10 times. Results were stable and repeatable. The results obtained (AUC = 0.82, MCC = 0.45) are statistically significant and show that RR intervals carry information about arrhythmia onset. The sample size used in this study was too small to build useful medical predictive models, hence large data sets should be explored to construct models of sufficient quality to be of direct utility in medical practice.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
5.
go back to reference Iranitalab, I.: Prediction of arrythmia through analysis of the ventricular electrogram. A thesis presented to The Faculty of the Department of Chemical and Materials Engineering. San Jose State University (2009) Iranitalab, I.: Prediction of arrythmia through analysis of the ventricular electrogram. A thesis presented to The Faculty of the Department of Chemical and Materials Engineering. San Jose State University (2009)
6.
go back to reference Taye, G.T., Shim, E.B., Hwang, H.-J., et al.: Machine learning approach to predict ventricular fibrillation based on QRS complex shape. Front. Physiol. 10, 1193 (2019) CrossRef Taye, G.T., Shim, E.B., Hwang, H.-J., et al.: Machine learning approach to predict ventricular fibrillation based on QRS complex shape. Front. Physiol. 10, 1193 (2019) CrossRef
7.
go back to reference Blužaitė, I., Rickli, H., et al.: Assessment of QT dispersion in prediction of life-threatening ventricular arrythmias in recipients of implantable cardioverter defibrillator. Elek. Elektrotech. 75(3), 73–76 (2007) Blužaitė, I., Rickli, H., et al.: Assessment of QT dispersion in prediction of life-threatening ventricular arrythmias in recipients of implantable cardioverter defibrillator. Elek. Elektrotech. 75(3), 73–76 (2007)
9.
go back to reference Cp, P., Suresh, A., Suresh, G.: Prediction of cardiac arrhythmia type using clustering and regression approach (P-CA-CRA). In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 51–54. IEEE (2017) Cp, P., Suresh, A., Suresh, G.: Prediction of cardiac arrhythmia type using clustering and regression approach (P-CA-CRA). In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 51–54. IEEE (2017)
11.
13.
go back to reference R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2008) R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2008)
14.
go back to reference Challis, R.E., Kitney, R.I.: Biomedical signal processing (in four parts). Part 2. The frequency transforms and their inter-relationships. Med. Biol. Eng. Comput. 29, 1–17 (1991) CrossRef Challis, R.E., Kitney, R.I.: Biomedical signal processing (in four parts). Part 2. The frequency transforms and their inter-relationships. Med. Biol. Eng. Comput. 29, 1–17 (1991) CrossRef
15.
go back to reference Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, Cambridge (2008) MATH Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, Cambridge (2008) MATH
22.
go back to reference Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta - a system for feature selection. Fundam. Inf. 101, 271–285 (2010) MathSciNet Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta - a system for feature selection. Fundam. Inf. 101, 271–285 (2010) MathSciNet
23.
go back to reference Piliszek, R., Mnich, K., et al.: MDFS - Multidimensional feature selection in R. R J. 11, 198–210 (2019) CrossRef Piliszek, R., Mnich, K., et al.: MDFS - Multidimensional feature selection in R. R J. 11, 198–210 (2019) CrossRef
26.
go back to reference Fernández-Delgado, M., Cernadas, E., et al.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014) MathSciNetMATH Fernández-Delgado, M., Cernadas, E., et al.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014) MathSciNetMATH
27.
go back to reference Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News. 2, 18–22 (2002) Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News. 2, 18–22 (2002)
29.
go back to reference Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010) MathSciNetMATH Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010) MathSciNetMATH
Metadata
Title
Towards Prediction of Heart Arrhythmia Onset Using Machine Learning
Authors
Agnieszka Kitlas Golińska
Wojciech Lesiński
Andrzej Przybylski
Witold R. Rudnicki
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_28