Skip to main content
Top

2019 | OriginalPaper | Chapter

Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm

Authors : Veselin Dobrev, Patrick Knupp, Tzanio Kolev, Vladimir Tomov

Published in: 27th International Meshing Roundtable

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a method for simulation-driven optimization of high-order curved meshes. This work builds on the results of Dobrev et al. (The target-matrix optimization paradigm for high-order meshes. ArXiv e-prints, 2018, https://​arxiv.​org/​abs/​1807.​09807), where we described a framework for controlling and improving the quality of high-order finite element meshes based on extensions of the Target-Matrix Optimization Paradigm (TMOP) of Knupp (Eng Comput 28(4):419–429, 2012). In contrast to Dobrev et al. (2018), where all targets were based strictly on geometric information, in this work we blend physical information into the high-order mesh optimization process. The construction of target-matrices is enhanced by using discrete fields of interest, e.g., proximity to a particular region. As these discrete fields are defined only with respect to the initial mesh, their values on the intermediate meshes (produced during the optimization process) must be computed. We present two approaches for obtaining values on the intermediate meshes, namely, interpolation in physical space, and advection remap on the intermediate meshes. Our algorithm allows high-order applications to have precise control over local mesh quality, while still improving the mesh globally. The benefits of the new high-order TMOP methods are illustrated on examples from a high-order arbitrary Lagrangian-Eulerian application (BLAST, High-order curvilinear finite elements for shock hydrodynamics. LLNL code, 2018, http://​www.​llnl.​gov/​CASC/​blast).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, Monotonicity in high-order curvilinear finite element arbitrary Lagrangian–Eulerian remap. Int. J. Numer. Methods Fluids 77(5), 249–273 (2015)MathSciNetCrossRef R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, Monotonicity in high-order curvilinear finite element arbitrary Lagrangian–Eulerian remap. Int. J. Numer. Methods Fluids 77(5), 249–273 (2015)MathSciNetCrossRef
2.
go back to reference R.W. Anderson, V.A. Dobrev, T.V. Kolev, D. Kuzmin, M.Q. de Luna, R.N. Rieben, V.Z. Tomov, High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J. Comput. Phys. 334, 102–124 (2017)MathSciNetCrossRef R.W. Anderson, V.A. Dobrev, T.V. Kolev, D. Kuzmin, M.Q. de Luna, R.N. Rieben, V.Z. Tomov, High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J. Comput. Phys. 334, 102–124 (2017)MathSciNetCrossRef
3.
go back to reference R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, High-order multi-material ALE hydrodynamics. SIAM J. Sci. Comput. 40(1), B32–B58 (2018)MathSciNetCrossRef R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, High-order multi-material ALE hydrodynamics. SIAM J. Sci. Comput. 40(1), B32–B58 (2018)MathSciNetCrossRef
4.
go back to reference A. Barlow, R. Hill, M.J. Shashkov, Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics. J. Comput. Phys. 276, 92–135 (2014)MathSciNetCrossRef A. Barlow, R. Hill, M.J. Shashkov, Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics. J. Comput. Phys. 276, 92–135 (2014)MathSciNetCrossRef
6.
go back to reference H. Borouchaki, P.L. George, F. Hecht, P. Laug, E. Saltel, Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem. Anal. Des. 25(1–2), 61–83 (1997). Adaptive Meshing, Part 1MathSciNetCrossRef H. Borouchaki, P.L. George, F. Hecht, P. Laug, E. Saltel, Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem. Anal. Des. 25(1–2), 61–83 (1997). Adaptive Meshing, Part 1MathSciNetCrossRef
7.
go back to reference W. Boscheri, M. Dumbser, High order accurate direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Comput. Fluids 136, 48–66 (2016)MathSciNetCrossRef W. Boscheri, M. Dumbser, High order accurate direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Comput. Fluids 136, 48–66 (2016)MathSciNetCrossRef
8.
go back to reference V. Dobrev, T. Kolev, R. Rieben, High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), 606–641 (2012)MathSciNetCrossRef V. Dobrev, T. Kolev, R. Rieben, High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), 606–641 (2012)MathSciNetCrossRef
9.
go back to reference V. Dobrev, T. Ellis, T. Kolev, R. Rieben, High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput. Fluids 83, 58–69 (2013)MathSciNetCrossRef V. Dobrev, T. Ellis, T. Kolev, R. Rieben, High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput. Fluids 83, 58–69 (2013)MathSciNetCrossRef
10.
go back to reference V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, Multi-material closure model for high-order finite element Lagrangian hydrodynamics. Int. J. Numer. Methods Fluids 82(10), 689–706 (2016)MathSciNetCrossRef V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, Multi-material closure model for high-order finite element Lagrangian hydrodynamics. Int. J. Numer. Methods Fluids 82(10), 689–706 (2016)MathSciNetCrossRef
12.
13.
go back to reference V.A. Garanzha, Polyconvex potentials, invertible deformations, and thermodynamically consistent formulation of the nonlinear elasticity equations. Comput. Math. Math. Phys. 50(9), 1561–1587 (2010)MathSciNetCrossRef V.A. Garanzha, Polyconvex potentials, invertible deformations, and thermodynamically consistent formulation of the nonlinear elasticity equations. Comput. Math. Math. Phys. 50(9), 1561–1587 (2010)MathSciNetCrossRef
14.
go back to reference V. Garanzha, L. Kudryavtseva, S. Utyuzhnikov, Variational method for untangling and optimization of spatial meshes. J. Comput. Appl. Math. 269, 24–41 (2014)MathSciNetCrossRef V. Garanzha, L. Kudryavtseva, S. Utyuzhnikov, Variational method for untangling and optimization of spatial meshes. J. Comput. Appl. Math. 269, 24–41 (2014)MathSciNetCrossRef
15.
go back to reference S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3), 271–306 (1959)MathSciNetMATH S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3), 271–306 (1959)MathSciNetMATH
16.
go back to reference P.T. Greene, S.P. Schofield, R. Nourgaliev, Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation. J. Comput. Phys. 335, 664–687 (2017)MathSciNetCrossRef P.T. Greene, S.P. Schofield, R. Nourgaliev, Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation. J. Comput. Phys. 335, 664–687 (2017)MathSciNetCrossRef
17.
go back to reference J.-L. Guermond, B. Popov, V. Tomov, Entropy-viscosity method for the single material Euler equations in Lagrangian frame. Comput. Methods Appl. Mech. Eng. 300, 402–426 (2016)MathSciNetCrossRef J.-L. Guermond, B. Popov, V. Tomov, Entropy-viscosity method for the single material Euler equations in Lagrangian frame. Comput. Methods Appl. Mech. Eng. 300, 402–426 (2016)MathSciNetCrossRef
18.
go back to reference W. Huang, R. Russell, Adaptive Moving Mesh Methods (Springer, 2011) W. Huang, R. Russell, Adaptive Moving Mesh Methods (Springer, 2011)
19.
go back to reference P. Knupp, Introducing the target-matrix paradigm for mesh optimization by node movement. Eng. Comput. 28(4), 419–429 (2012)CrossRef P. Knupp, Introducing the target-matrix paradigm for mesh optimization by node movement. Eng. Comput. 28(4), 419–429 (2012)CrossRef
21.
go back to reference M. Turner, J. Peiró, D. Moxey, Curvilinear mesh generation using a variational framework. Comput. Aided Des. 103, 73–91 (2018)MathSciNetCrossRef M. Turner, J. Peiró, D. Moxey, Curvilinear mesh generation using a variational framework. Comput. Aided Des. 103, 73–91 (2018)MathSciNetCrossRef
22.
go back to reference P. Váchal, P.-H. Maire, Discretizations for weighted condition number smoothing on general unstructured meshes. Comput. Fluids 46(1), 479–485 (2011)MathSciNetCrossRef P. Váchal, P.-H. Maire, Discretizations for weighted condition number smoothing on general unstructured meshes. Comput. Fluids 46(1), 479–485 (2011)MathSciNetCrossRef
Metadata
Title
Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm
Authors
Veselin Dobrev
Patrick Knupp
Tzanio Kolev
Vladimir Tomov
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13992-6_16

Premium Partner